scholarly journals Investigation on the Interactions between Self-Assembled β-Sheet Peptide Nanofibers and Model Cell Membranes

2020 ◽  
Vol 21 (24) ◽  
pp. 9518
Author(s):  
Tomonori Waku ◽  
Ayane Kasai ◽  
Akio Kobori ◽  
Naoki Tanaka

Self-assembled peptide nanofibers (NFs) obtained from β-sheet peptides conjugated with drugs, including antigenic peptides, have recently attracted significant attention. However, extensive studies on the interactions of β-sheet peptide NFs with model cell membranes have not been reported. In this study, we investigated the interactions between three types of NFs, composed of PEG-peptide conjugates with different ethylene glycol (EG) lengths (6-, 12- and 24-mer), and dipalmitoylphosphatidylcholine (DPPC) Langmuir membranes. When increasing the EG chain length, those interactions significantly decreased considering measurements in the presence of the NFs of: (i) changes in surface pressure of the DPPC Langmuir monolayers and (ii) surface pressure–area (π–A) compression isotherms of DPPC. Because the observed trend was similar to the EG length dependency with regard to cellular association and cytotoxicity of the NFs that was reported previously, the interaction of NFs with phospholipid membranes represented a crucial factor to determine the cellular association and toxicity of the NFs. In contrast to NFs, no changes were observed with varying EG chain length on the interaction of the building block peptide with the DPPC membrane. The results obtained herein can provide a design guideline on the formulation of β-sheet peptide NFs, which may broaden its potential.

2019 ◽  
Vol 20 (15) ◽  
pp. 3781 ◽  
Author(s):  
Tomonori Waku ◽  
Saki Nishigaki ◽  
Yuichi Kitagawa ◽  
Sayaka Koeda ◽  
Kazufumi Kawabata ◽  
...  

Recently, nanofibers (NFs) formed from antigenic peptides conjugated to β-sheet-forming peptides have attracted much attention as a new generation of vaccines. However, studies describing how the hydrophilic-hydrophobic balance of NF components affects cellular interactions of NFs are limited. In this report, three different NFs were prepared by self-assembly of β-sheet-forming peptides conjugated with model antigenic peptides (SIINFEKL) from ovalbumin and hydrophilic oligo-ethylene glycol (EG) of differing chain lengths (6-, 12- and 24-mer) to investigate the effect of EG length of antigen-loaded NFs on their cellular uptake, cytotoxicity, and dendritic cell (DC)-stimulation ability. We used an immortal DC line, termed JAWS II, derived from bone marrow-derived DCs of a C57BL/6 p53-knockout mouse. The uptake of NFs, consisting of the EG 12-mer by DCs, was the most effective and activated DC without exhibiting significant cytotoxicity. Increasing the EG chain length significantly reduced cellular entry and DC activation by NFs. Conversely, shortening the EG chain enhanced DC activation but increased toxicity and impaired water-dispersibility, resulting in low cellular uptake. These results show that the interaction of antigen-loaded NFs with cells can be tuned by the EG length, which provides useful design guidelines for the development of effective NF-based vaccines.


2021 ◽  
Vol 22 (11) ◽  
pp. 5939
Author(s):  
Emilia Piosik ◽  
Aleksandra Zaryczniak ◽  
Kinga Mylkie ◽  
Marta Ziegler-Borowska

Understanding the mechanism of interactions between magnetite nanoparticles and phospholipids that form cellular membranes at the molecular level is of crucial importance for their safe and effective application in medicine (e.g. magnetic resonance imaging, targeted drug delivery, and hyperthermia-based anticancer therapy). In these interactions, their surface coating plays a crucial role because even a small modification to its structure can cause significant changes to the behaviour of the magnetite nanoparticles that come in contact with a biomembrane. In this work, the influence of the magnetite nanoparticles functionalized with native and aminated starch on the thermodynamics, morphology, and dilatational elasticity of the model cell membranes was studied. The model cell membranes constituted the Langmuir monolayers formed at the air–water interface of dipalmitoylphosphatidylcholine (DPPC). The surface of the aminated starch-coated nanoparticles was enriched in highly reactive amino groups, which allowed more effective binding of drugs and biomolecules suitable for specific nano–bio applications. The studies indicated that the presence of these groups also reduced to some extent the disruptive effect of the magnetite nanoparticles on the model membranes and improved their adsorption.


2013 ◽  
Vol 42 (11) ◽  
pp. 1441-1443 ◽  
Author(s):  
Tomonori Waku ◽  
Yuichi Kitagawa ◽  
Kazufumi Kawabata ◽  
Saki Nishigaki ◽  
Shigeru Kunugi ◽  
...  

Soft Matter ◽  
2012 ◽  
Vol 8 (20) ◽  
pp. 5501 ◽  
Author(s):  
Seunghwan Jeong ◽  
Sung Ho Ha ◽  
Sang-Hyun Han ◽  
Min-Cheol Lim ◽  
Sun Min Kim ◽  
...  

2011 ◽  
Vol 115 (36) ◽  
pp. 17788-17798 ◽  
Author(s):  
María Alejandra Floridia Addato ◽  
Aldo A. Rubert ◽  
Guillermo A. Benítez ◽  
Mariano H. Fonticelli ◽  
Javier Carrasco ◽  
...  

2012 ◽  
Vol 3 ◽  
pp. 12-24 ◽  
Author(s):  
Hicham Hamoudi ◽  
Ping Kao ◽  
Alexei Nefedov ◽  
David L Allara ◽  
Michael Zharnikov

Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs.


Author(s):  
Yongchao Wu ◽  
Qixin Zheng ◽  
Jingyuan Du ◽  
Yulin Song ◽  
Bin Wu ◽  
...  

2015 ◽  
Vol 36 (7) ◽  
pp. 687-689 ◽  
Author(s):  
Peng Xiao ◽  
Linfeng Lan ◽  
Ting Dong ◽  
Zhenguo Lin ◽  
Sheng Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document