scholarly journals Homozygous HESX1 and COL1A1 Gene Variants in a Boy with Growth Hormone Deficiency and Early Onset Osteoporosis

2021 ◽  
Vol 22 (2) ◽  
pp. 750
Author(s):  
Viola Alesi ◽  
Maria Lisa Dentici ◽  
Silvia Genovese ◽  
Sara Loddo ◽  
Emanuele Bellacchio ◽  
...  

We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.

2020 ◽  
Vol 33 (6) ◽  
pp. 735-742
Author(s):  
Meliha Demiral ◽  
Mehmet Salih Karaca ◽  
Edip Unal ◽  
Birsen Baysal ◽  
Rıza Taner Baran ◽  
...  

AbstractBackgroundsLimitations in the evaluation of the pituitary size and changes according to pubertal status make its validity questionable. Recently, in a small-scale study, pons ratio (PR) has been suggested as a more sensitive tool for diagnosis and etiological evaluation of growth hormone deficiency (GHD). The aim of the study is to evaluate the diagnostic value of PR in the diagnosis of GHD.MethodsWe retrospectively evaluated the pituitary magnetic resonance imaging (MRI) of 133 patients with a diagnosis of GHD. Primary axis (PA) was assigned as a line crossing the mid-sagittal dorsum sella and fourth ventricle. PR was defined as the pons height above the PA divided by total pons height. The PR of patients with GHD was compared to subjects without GHD.ResultsStudy included 133 patients with GHD and 47 controls. In total, 121 (91%) patients had isolated GHD and 12 (9%) patients had multiple pituitary hormone deficiency. The PR of the patient group (mean: 0.32 ± 0.89; range: 0.14–0.63) was significantly higher than controls (mean: 0.26 ± 0.067; range 0.19–0.44) (p: 0.000). The optimal cut-off value of PR for GHD diagnosis was 0.27 (sensitivity 71% specificity 56%). There was a negative correlation between anterior pituitary height (APH)-SDS and PR (p: 0.002; r: −0.27). APH was increased, but PR remained unchanged in pubertal patients (p: 0.089).ConclusionsPR measurement is a noninvasive, practical method with a cost-benefit clinical value. As it is not affected by pubertal status, PR is potentially a more sensitive tool for evaluation of pituitary gland in GHD patients compared to APH.


1992 ◽  
Vol 127 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Zvi Laron ◽  
Anne-Maria Suikkari ◽  
Beatrice Klinger ◽  
Aviva Silbergeld ◽  
Athalia Pertzelan ◽  
...  

Insulin-like growth factors (IGFs) mediate the effects of growth hormone (GH), and the insulin-like growth factor-binding proteins (IGFBPs) modulate the actions of IGFs in tissues. We studied the circulating levels of IGFBP-1 in 6 children and 9 adults with Laron type dwarfism (LTD), in 11 children and 21 adults with growth hormone deficiency (GHD), and in 8 children with constitutional short stature. Compared with the situation in healthy children, the basal serum IGFBP-1 concentration was 5.4-fold higher in LTD children, 4.1-fold higher in GHD children, and 3.8-fold higher in children with short stature (p<0.02 vs controls in all groups). In adult patients with multiple pituitary hormone deficiency (MPHD), the IGFBP-1 concentration was 2-fold elevated, but it was normal in adult LTD patients. Intravenous (N= 10) or subcutaneous (N=9) administration ofIGF-I (75 μg·kg−1 and 150 μg·kg−1, respectively) in LTD children resulted in a rapid 50–60% fall in serum insulin (p<0.02), a decline in blood glucose and a concomitant 40–60% rise of IGFBP-1 levels (p<0.05). Treatment for seven days with IGF-I (150 μg·kg−1·d−1) resulted in a decrease by 34% and 44% of serum IGFBP-1 level in two out of three children with LTD. After prolonged GH therapy, the IGFBP-1 level fell in GHD children by 29% (p<0.05), in GHD adults by 52% (p<0.02) and in children with constitutional short stature by 17% (p<0.02). IGFBP-1 and insulin concentrations were inversely related in patients with GHD (r= −0.66, p<0.001) or with LTD (r= −0.57, p<0.05). Our data suggest that: (a) increased IGFBP-1 concentration in LTD, GHD and constitutional short children may, at least in part, be accounted for by an IGF-I deficiency; (b) both the rise in IGF-I and a fall in insulin contributed to the rise in IGFBP-1 after acute IGF-I administration; (c) prolonged IGF-I or GH treatment causes a persistent decline in IGFBP-1 concentration. In conclusion, IGF-I and GH may regulate IGFBP-1 secretion either directly or via insulin.


2020 ◽  
Vol 33 (3) ◽  
pp. 443-447 ◽  
Author(s):  
Elizabeth T. Rosolowsky ◽  
Robert Stein ◽  
Seth D. Marks ◽  
Norma Leonard

AbstractWe describe four phenotypically different brothers who share the same microduplication of Xq27.1, which contains the SOX3 gene. SOX3 mutations have been associated with growth hormone deficiency, variable degrees of additional pituitary hormone deficiencies, and mental retardation. SOX3 also appears to play an important role in pharyngeal arch segmentation that gives rise to craniofacial structures. While these four brothers have inherited the same mutation, they manifest a spectrum of phenotypes, ranging from complete, multiple pituitary hormone deficiencies to no apparent pituitary hormone deficiency with or without craniopharyngeal/facial dysmorphisms. We look to the literature to provide putative explanations for the variable expression of the brothers’ shared SOX3 mutation.


2018 ◽  
Vol 31 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Hongbo Yang ◽  
Linjie Wang ◽  
Xiaonan Qiu ◽  
Kemin Yan ◽  
Fengying Gong ◽  
...  

Abstract Background: Recombinant human growth hormone (rhGH) replacement therapy is usually stopped after linear growth completion in patients with growth hormone deficiency. In patients with multiple pituitary hormone deficiency (MPHD), the long-term effects of discontinuation of rhGH replacement are unknown. Methods: In this study, the anthropometric and metabolic parameters of 24 male patients with adult growth hormone deficiency (AGHD) due to MPHD in childhood after cessation of rhGH therapy for a mean of 7.1 years were measured and compared with 35 age-matched controls. Body composition was evaluated by bioelectrical impedance analysis (BIA). Results: In the AGHD group, body mass index (BMI) was significantly increased and 29.2% had obesity. The AGHD group had a 17.7 cm increase in waist circumference (WC). The fat free mass (FFM) was significantly lower in the AGHD group. Both the fat mass (FM) and percentage of fat mass (FM%) were significantly increased in the AGHD group. Both the systolic blood pressure (BP) and diastolic pressure were significantly lower in AGHD group. The lipid profile was generally similar in both groups, except for a decrease of high density lipoprotein-cholesterol (HDL-C) in the AGHD group. There was significant hyperuricemia in the AGHD group. Conclusions: Cessation of rhGH leads to a significant increase of FM in early adulthood in male patients with childhood-onset MPHD (CO-MPHD).


2019 ◽  
Vol 20 (8) ◽  
pp. 1875 ◽  
Author(s):  
Laura Penta ◽  
Carla Bizzarri ◽  
Michela Panichi ◽  
Antonio Novelli ◽  
Francesca Romana Lepri ◽  
...  

Growth hormone deficiency (GHD) can be present from the neonatal period to adulthood and can be the result of congenital or acquired insults. In addition, GHD can be classified into two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). CPHD is a disorder characterized by impaired production of two or more anterior and/or posterior pituitary hormones. Many genes implicated in CPHD remain to be identified. Better genetic characterization will provide more information about the disorder and result in important genetic counselling because a number of patients with hypopituitarism represent familial cases. To date, PROP1 mutations represent the most common known genetic cause of CPHD both in sporadic and familial cases. We report a novel mutation in the PROP1 gene in an infant with CPHD and an enlarged pituitary gland. Close long-term follow-up will reveal other possible hormonal defects and pituitary involution.


2019 ◽  
Vol 20 (13) ◽  
pp. 3323 ◽  
Author(s):  
Oratile Kgosidialwa ◽  
Osamah Hakami ◽  
Hafiz Muhammad Zia-Ul-Hussnain ◽  
Amar Agha

Traumatic brain injury (TBI) is fairly common and annually affects millions of people worldwide. Post traumatic hypopituitarism (PTHP) has been increasingly recognized as an important and prevalent clinical entity. Growth hormone deficiency (GHD) is the most common pituitary hormone deficit in long-term survivors of TBI. The pathophysiology of GHD post TBI is thought to be multifactorial including primary and secondary mechanisms. An interplay of ischemia, cytotoxicity, and inflammation post TBI have been suggested, resulting in pituitary hormone deficits. Signs and symptoms of GHD can overlap with those of TBI and may delay rehabilitation/recovery if not recognized and treated. Screening for GHD is recommended in the chronic phase, at least six months to a year after TBI as GH may recover in those with GHD in the acute phase; conversely, it may manifest in those with a previously intact GH axis. Dynamic testing is the standard method to diagnose GHD in this population. GHD is associated with long-term poor medical outcomes. Treatment with recombinant human growth hormone (rhGH) seems to ameliorate some of these features. This review will discuss the frequency and pathophysiology of GHD post TBI, its clinical consequences, and the outcomes of treatment with GH replacement.


Author(s):  
Majid Firouzi ◽  
Hamidreza Sherkatolabbasieh ◽  
Shiva Shafizadeh

: Several different proteins regulate, directly or indirectly, the production of growth hormone from the pituitary gland, thereby complex genetics is involved. Defects in these genes are related to growth hormone deficiency solely, or deficiency of other hormones, secreted from the pituitary gland including growth hormone. These studies can aid clinicians to trace the pattern of the disease between the families, start early treatment and predict possible future consequences. This paper highlights some of the most common and novel genetic anomalies concerning growth hormone, which are responsible for various genetic defects in isolated growth and combined pituitary hormone deficiency disease.


Sign in / Sign up

Export Citation Format

Share Document