scholarly journals Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders

2021 ◽  
Vol 22 (5) ◽  
pp. 2269
Author(s):  
Keiji Masuda ◽  
Xu Han ◽  
Hiroki Kato ◽  
Hiroshi Sato ◽  
Yu Zhang ◽  
...  

A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.

2007 ◽  
Vol 2 (4) ◽  
pp. 280-292 ◽  
Author(s):  
Pilar Ruiz-Lozano ◽  
Prithi Rajan

Author(s):  
Antoine Berbéri ◽  
Joseph Sabbagh ◽  
Rita Bou Assaf ◽  
Michella Ghassibe-Sabbagh ◽  
Fatima Al-Nemer ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 318-326
Author(s):  
Yan Chen ◽  
Xinzhu Li ◽  
Jingyi Wu ◽  
Wanyu Lu ◽  
Wenan Xu ◽  
...  

2020 ◽  
Vol 52 (1) ◽  
pp. 24-35
Author(s):  
Kamal Kant Sahu ◽  
Ahmad Daniyal Siddiqui ◽  
Jan Cerny

Abstract The COVID-19 pandemic has led to a major setback in both the health and economic sectors across the globe. The scale of the problem is enormous because we still do not have any specific anti-SARS-CoV-2 antiviral agent or vaccine. The human immune system has never been exposed to this novel virus, so the viral interactions with the human immune system are completely naive. New approaches are being studied at various levels, including animal in vitro models and human-based studies, to contain the COVID-19 pandemic as soon as possible. Many drugs are being tested for repurposing, but so far only remdesivir has shown some positive benefits based on preliminary reports, but these results also need further confirmation via ongoing trials. Otherwise, no other agents have shown an impactful response against COVID-19. Recently, research exploring the therapeutic application of mesenchymal stem cells (MSCs) in critically ill patients suffering from COVID-19 has gained momentum. The patients belonging to this subset are most likely beyond the point where they could benefit from an antiviral therapy because most of their illness at this stage of disease is driven by inflammatory (over)response of the immune system. In this review, we discuss the potential of MSCs as a therapeutic option for patients with COVID-19, based on the encouraging results from the preliminary data showing improved outcomes in the progression of COVID-19 disease.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Shagufta Naz ◽  
Farhan Raza Khan ◽  
Raheela Rahmat Zohra ◽  
Sahreena Salim Lakhundi ◽  
Mehwish Sagheer Khan ◽  
...  

Objective: To isolate dental pulp mesenchymal stem cells (MSCs) from non-infected human permanent and deciduous teeth. Methods: It was an in-vitro experimental study. Human teeth were collected from 13 apparently healthy subjects including nine adults and four children. After decoronation dental pulps were extirpated from teeth and cultured via explant method in a stem cell defined media. Data was analyzed by descriptive statistics. Results: As above MSCs emerged exhibiting fibroblast-like morphology. In vitro culture was positive for 100% (9/9) and 75% (3/4) of the permanent and deciduous teeth respectively. First cell appeared from deciduous teeth pulp in 10±6.2 days while permanent teeth pulp took 12.4±3.7 days. Together, 26.6±3.6 and 24.5±3.5 days were required for permanent and deciduous tooth pulp stem cells to be ready for further assays. Conclusions: The protocol we developed is easy and consistent and can be used to generate reliable source of MScs for engineering of calcified and non-calcified tissue for regenerative medicine approaches. doi: https://doi.org/10.12669/pjms.35.4.540 How to cite this:Naz S, Khan FR, Zohra RR, Lakhundi SS, Khan MS, Mohammed N, et al. Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pak J Med Sci. 2019;35(4):---------. doi: https://doi.org/10.12669/pjms.35.4.540 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5976-5976
Author(s):  
Hwan-Young Kim ◽  
Ji-Eun Noh ◽  
Hee-Jo Baek ◽  
Jae-Dong Moon ◽  
Jong-Hee Shin ◽  
...  

Abstract Background: Fluoranthene is a member of the polycyclic aromatic hydrocarbon family, comprising ubiquitous environmental pollutants and potent mutagens. Fluoranthene has been classified by the International Agency for Research on Cancer as a group 3 carcinogens, whose carcinogenicity has not been fully determined in humans. Moreover, the stem cell toxicity and global hematotoxicity associated with fluoranthene exposure have not been thoroughly studied in the bone marrow-mesenchymal stem cells (BM-MSCs). In this study, we determined whether fluoranthene-induced cellular responses could be used as biomarkers for the examination of BM-MSC dysfunction, and suggested the possible use of BM-MSCs for monitoring the acute hematotoxicity caused by environmental hazards. Materials and Methods: Apreviously published protocol was used for the isolation and characterization of BM-MSCs. Fluoranthene was added to the cell culture medium in the range of 25–500 µM. The cellular levels of hydrogen peroxide, indicating the presence of reactive oxygen species, were measured using an enzyme immunoassay. The mitochondrial mass, membrane potential, and mitochondrial DNA (mtDNA) copy number were measured using MitoTracker Green, MitoTracker Red probes, and real time PCR, respectively. A proteomic analysis of the mitochondrial-rich cytoplasmic fraction was performed using nano-LC-ESI-MS/MS, BioWorksBrowser, and the SEQUEST search engines. Quantitative mRNA and immunoblot measurements were used to further confirm the altered mRNA expression as well as to determine the levels of cellular proteins obtained from the proteomic analysis. Results: After exposure to fluoranthene, the BM-MSCs showed a marked reduction in cell number, and the viability decreased substantially after two days of exposure. BM-MSCs that were not treated with fluoranthene remained compact and spindle-shaped. These cells remained tightly attached to each other and to the substrate. In general, a direct exposure of fluoranthene depressed the proliferative capacity and altered the cell morphology of BM-MSCs. The cells detached from the subsurface, and cell-to-cell attachments were also lost. The viability significantly decreased after two days of fluoranthene exposure. The mtDNA copy number and the mass showed a rapid elevation after a 5-day exposure to fluoranthene. Hundreds of cellular proteins in the mitochondria-rich cytoplasmic fraction were markedly deregulated in cells treated with fluoranthene. The protein expression levels of poly [ADP-ribose] polymerase 1 (PARP-1), elongation factor 1-gamma, heat shock 70 kDa protein 1A/1B, heterogeneous nuclear ribonucleoproteins A2/B1 isoform B1, ATP-dependent RNA helicase DDX5, and T-complex protein 1 subunit theta were upregulated more than five-fold in cells treated with fluoranthene than in untreated cells. A significant (more than 2-fold) down-regulation in the cellular levels of the proteins myosin-9, protein ALO17 isoform 1, filamin-C isoform b, Na/K-transporting ATPase subunit alpha-1, nuclear pore membrane glycoprotein 210, and DNA-dependent protein kinase catalytic subunit isoform 2 was observed after a similar fluoranthene treatment. The presence of PARP-1 was further confirmed using mRNA analysis. Conclusion: This study investigated the global cellular responses after exposure to fluoranthene: PARP-1 was recognized as a notable biomarker for monitoring the PAH-induced hematotoxicity. In summary, BM-MSCs are promising candidates for the development of unique in vitro model systems for predicting fluoranthene-associated hematotoxicity and general toxicity in humans. Keywords: Fluoranthene, genotoxicity, hematotoxicity, bone marrow-mesenchymal stem cells Figure 1. Stem cell-based in vitro models and biomarkers for studying the hematotoxic effects of fluoranthene exposure. (A) Direct exposure of PAHs depressed the proliferative capacity of h-TERT cells with a thread-like or round shape and loose cell-to-cell attachment. (B) Cytotoxic effect of fluoranthene exposure to the bone marrow-mesenchymal stem cells remarkably increased with dose-dependent manner. (C) Identified potential biomarkers were categorized as their biological processes and molecular functions. (D) Immunoblot confirmed the increased expression of poly [ADP-ribose] polymerase 1 (PARP-1) after exposure of fluoranthene. Figure 1. Stem cell-based in vitro models and biomarkers for studying the hematotoxic effects of fluoranthene exposure. (A) Direct exposure of PAHs depressed the proliferative capacity of h-TERT cells with a thread-like or round shape and loose cell-to-cell attachment. (B) Cytotoxic effect of fluoranthene exposure to the bone marrow-mesenchymal stem cells remarkably increased with dose-dependent manner. (C) Identified potential biomarkers were categorized as their biological processes and molecular functions. (D) Immunoblot confirmed the increased expression of poly [ADP-ribose] polymerase 1 (PARP-1) after exposure of fluoranthene. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document