scholarly journals Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Idiopathic Autism Spectrum Disorder and Fragile X Syndrome: A Pilot Study

2021 ◽  
Vol 22 (6) ◽  
pp. 2863
Author(s):  
James Robert Brašić ◽  
Ayon Nandi ◽  
David S. Russell ◽  
Danna Jennings ◽  
Olivier Barret ◽  
...  

Multiple lines of evidence suggest that dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) plays a role in the pathogenesis of autism spectrum disorder (ASD). Yet animal and human investigations of mGluR5 expression provide conflicting findings about the nature of dysregulation of cerebral mGluR5 pathways in subtypes of ASD. The demonstration of reduced mGluR5 expression throughout the living brains of men with fragile X syndrome (FXS), the most common known single-gene cause of ASD, provides a clue to examine mGluR5 expression in ASD. We aimed to (A) compare and contrast mGluR5 expression in idiopathic autism spectrum disorder (IASD), FXS, and typical development (TD) and (B) show the value of positron emission tomography (PET) for the application of precision medicine for the diagnosis and treatment of individuals with IASD, FXS, and related conditions. Two teams of investigators independently administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a novel, specific mGluR5 PET ligand to quantitatively measure the density and the distribution of mGluR5s in the brain regions, to participants of both sexes with IASD and TD and men with FXS. In contrast to participants with TD, mGluR5 expression was significantly increased in the cortical regions of participants with IASD and significantly reduced in all regions of men with FXS. These results suggest the feasibility of this protocol as a valuable tool to measure mGluR5 expression in clinical trials of individuals with IASD and FXS and related conditions.

2020 ◽  
Vol 10 (12) ◽  
pp. 899
Author(s):  
James R. Brašić ◽  
Ayon Nandi ◽  
David S. Russell ◽  
Danna Jennings ◽  
Olivier Barret ◽  
...  

Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome (FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) in fmr1 knockout (KO) mouse models have not been confirmed in humans with FXS. Measurement of cerebral mGluR5 expression in humans with FXS exposed to NAMs might help in that effort. We used positron emission tomography (PET) to measure the mGluR5 density as a proxy of mGluR5 expression in cortical and subcortical brain regions to confirm target engagement of NAMs for mGluR5s. The density and the distribution of mGluR5 were measured in two independent samples of men with FXS (N = 9) and typical development (TD) (N = 8). We showed the feasibility of this complex study including MRI and PET, meaning that this challenging protocol can be accomplished in men with FXS with an adequate preparation. Analysis of variance of estimated mGluR5 expression showed that mGluR5 expression was significantly reduced in cortical and subcortical regions of men with FXS in contrast to age-matched men with TD.


2021 ◽  
Vol 22 (6) ◽  
pp. 2811
Author(s):  
Yuyoung Joo ◽  
David R. Benavides

Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.


2019 ◽  
Vol 9 (8) ◽  
pp. 202
Author(s):  
Daman Kumari ◽  
Inbal Gazy

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability, as well as the most common known monogenic cause of autism spectrum disorder (ASD), affecting 1 in 4000–8000 people worldwide [...]


Sign in / Sign up

Export Citation Format

Share Document