scholarly journals ATP-Independent Initiation during Cap-Independent Translation of m6A-Modified mRNA

2021 ◽  
Vol 22 (7) ◽  
pp. 3662
Author(s):  
Pavel A. Sakharov ◽  
Egor A. Smolin ◽  
Dmitry N. Lyabin ◽  
Sultan C. Agalarov

The methylation of adenosine in the N6 position (m6A) is a widely used modification of eukaryotic mRNAs. Its importance for the regulation of mRNA translation was put forward recently, essentially due to the ability of methylated mRNA to be translated in conditions of inhibited cap-dependent translation initiation, e.g., under stress. However, the peculiarities of translation initiation on m6A-modified mRNAs are not fully known. In this study, we used toeprinting and translation in a cell-free system to confirm that m6A-modified mRNAs can be translated in conditions of suppressed cap-dependent translation. We show for the first time that m6A-modified mRNAs display not only decreased elongation, but also a lower efficiency of translation initiation. Additionally, we report relative resistance of m6A-mRNA translation initiation in the absence of ATP and inhibited eIF4A activity. Our novel findings indicate that the scanning of m6A-modified leader sequences is performed by a noncanonical mechanism.

FEBS Letters ◽  
1995 ◽  
Vol 359 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Vladimir L. Katanaev ◽  
Oleg V. Kurnasov ◽  
Alexander S. Spirin

1980 ◽  
Vol 6 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Gian L. Gianfranceschi ◽  
Marian Hillar ◽  
Jan Przyjemski ◽  
Domenico Amici ◽  
Luigi Guglielmi

1992 ◽  
Vol 70 (12) ◽  
pp. 1301-1312 ◽  
Author(s):  
Khosrow Adeli ◽  
Andre Theriault

Insulin modulation of apolipoprotein B gene expression was studied at the translational level by the use of a cell-free translation system from a hepatoma cell-line, HepG2. Extracts of HepG2 cells lysed with lysolecithin were found to have high in vitro protein synthesizing activity utilizing endogenous mRNA. The level of peptide chain initiation was high, as suggested by a significant inhibition of translation by edeine. The translation products of endogenous mRNA in HepG2 cell-free lysate were probed with anti-apolipoprotein B antibodies to investigate its synthesis. A 550 kilodalton (kDa) polypeptide was selected by a polyclonal antibody, as well as a monoclonal antibody, against the C-terminal end of apolipoprotein B molecule. This in vitro synthesized polypeptide was also found to compare well in size with the in vivo product. The HepG2 lysate was also shown to efficiently synthesize in vitro a number of other proteins including albumin, apolipoprotein E, apolipoprotein A1, and actin. The in vitro synthesis of polypeptides as large as 500 kDa was unexpected and has not previously been demonstrated in a cell-free system. The HepG2 translation system was used to investigate the effect of insulin on the in vitro translation of apolipoprotein B. Lysates prepared from HepG2 cells treated with insulin were found to have lower translational activity (by an average of 52.3%) for apolipoprotein B compared with lysates from control untreated cells. In vitro synthesis of actin and apolipoprotein E were unaffected under these conditions. The insulin-stimulated decline in in vitro apolipoprotein B synthesis was not due to a change in apolipoprotein B mRNA levels as determined by slot- and Northern-blot analyses, suggesting that the inhibitory effect of insulin may be exerted partly at the level of apolipoprotein B mRNA translation.Key words: apolipoprotein B, translation, cell-free system, HepG2, insulin.


1982 ◽  
Vol 23 (6) ◽  
pp. 803-810
Author(s):  
S Hata ◽  
T Nishino ◽  
N Ariga ◽  
H Katsuki

1989 ◽  
Vol 264 (10) ◽  
pp. 5392-5399
Author(s):  
L S Mayorga ◽  
R Diaz ◽  
P D Stahl
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document