scholarly journals A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues

2021 ◽  
Vol 22 (13) ◽  
pp. 6877
Author(s):  
Yannan Shi ◽  
Yao Li ◽  
Yongchao Guo ◽  
Eli James Borrego ◽  
Zhengyi Wei ◽  
...  

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.

Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


Author(s):  
Georgeta Oroian ◽  
G. Morar ◽  
I. Haş ◽  
Voichiţa Haş

The use of cytoplasmatic male-sterility in maize seed production contributes to increase economical efficiency and to obtain great genetical seeds. Through this theme one has followed the realization of a comparative study between some hybrids obtained to Turda on C and T cytoplasm their homologues, developed with normal and through the castration of the maternal parents. The researches aimed mainly the phenotypic and genotypic variability of the hybrids, the degree of male-sterility and the capacity of production, in phytotechnic conditions in different densities.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yanyan Sun ◽  
Dongsuo Zhang ◽  
Zhenzhen Wang ◽  
Yuan Guo ◽  
Xiaomin Sun ◽  
...  

Abstract Background Photoperiod and/or thermo-sensitive male sterility is an effective pollination control system in crop two-line hybrid breeding. We previously discovered the spontaneous mutation of a partially male sterile plant and developed a thermo-sensitive genic male sterile (TGMS) line 373S in Brassica napus L. The present study characterized this TGMS line through cytological observation, photoperiod/ temperature treatments, and genetic investigation. Results Microscopic observation revealed that the condensed cytoplasm and irregular exine of microspores and the abnormal degradation of tapetum are related to pollen abortion. Different temperature and photoperiod treatments in field and growth cabinet conditions indicated that the fertility alteration of 373S was mainly caused by temperature changes. The effects of photoperiod and interaction between temperature and photoperiod were insignificant. The critical temperature leading to fertility alteration ranged from 10 °C (15 °C/5 °C) to 12 °C (17 °C/7 °C), and the temperature-responding stage was coincident with anther development from pollen mother cell formation to meiosis stages. Genetic analysis indicated that the TGMS trait in 373S was controlled by one pair of genes, with male sterility as the recessive. Multiplex PCR analysis revealed that the cytoplasm of 373S is pol type. Conclusions Our study suggested that the 373S line in B. napus has a novel thermo-sensitive gene Bnmst1 in Pol CMS cytoplasm background, and its fertility alteration is mainly caused by temperature changes. Our results will broaden the TGMS resources and lay the foundation for two-line hybrid breeding in B. napus.


2020 ◽  
Vol 71 (20) ◽  
pp. 6328-6339
Author(s):  
José Fernández-Gómez ◽  
Behzad Talle ◽  
Zoe A Wilson

Abstract Understanding the control of fertility is critical for crop yield and breeding; this is particularly important for hybrid breeding to capitalize upon the resultant hybrid vigour. Different hybrid breeding systems have been adopted; however, these are challenging and crop specific. Mutants with environmentally reversible fertility offer valuable opportunities for hybrid breeding. The barley HvMS1 gene encodes a PHD-finger transcription factor that is expressed in the anther tapetum, which is essential for pollen development and causes complete male sterility when overexpressed in barley. This male sterility is due at least in part to indehiscent anthers resulting from incomplete tapetum degeneration, failure of anther opening, and sticky pollen under normal growth conditions (15 °C). However, dehiscence and fertility are restored when plants are grown at temperatures >20 °C, or when transferred to >20 °C during flowering prior to pollen mitosis I, with transfer at later stages unable to rescue fertility in vivo. As far as we are aware, this is the first report of thermosensitive male sterility in barley. This offers opportunities to understand the impact of temperature on pollen development and potential applications for environmentally switchable hybrid breeding systems; it also provides a ‘female’ male-sterile breeding tool that does not need emasculation to facilitate backcrossing.


2013 ◽  
Vol 64 (18) ◽  
pp. 5411-5428 ◽  
Author(s):  
Ryan Whitford ◽  
Delphine Fleury ◽  
Jochen C. Reif ◽  
Melissa Garcia ◽  
Takashi Okada ◽  
...  

2009 ◽  
Vol 148 (1) ◽  
pp. 73-82 ◽  
Author(s):  
M. E. CISNEROS-LÓPEZ ◽  
L. E. MENDOZA-ONOFRE ◽  
H. A. ZAVALETA-MANCERA ◽  
V. A. GONZÁLEZ-HERNÁNDEZ ◽  
G. MORA-AGUILERA ◽  
...  

SUMMARYSix pairs of isogenic lines of sorghum (Sorghum bicolor L. Moench) were sown in field plots in Montecillo, State of México (2240 m altitude), in 2005 and 2006. Crosses A (♀)×B (♂) were done in each pair. In A-lines, the length of pistil, stigma, style and ovary, as well as the ovary width, were measured. In B-lines, pollen diameter, viability (cytoplasm density) and production were evaluated. Pollen germination and pollen tube growth in the pistils of the A-lines, were quantified in vivo with aniline blue and epifluorescence 18 h after pollination (HAP), while fertilized pistils were counted at 96 HAP. Histological studies on both pollinated and non-pollinated pistils were performed in one male-sterile line. Seed yield, mean-seed weight, seeds per panicle and seed set (SS; seeds/flower/panicle) were determined at harvest. Pollen viability was the variable most related to pollen germination and pollen tube growth. Stigma receptivity was not associated with its morphology. Growth of the pollen tube in stigma, style and ovary was observed in the transmitting tissue 18 HAP, running parallel to the vascular tissue. Yield under chilling field temperatures (minimum average of 6 and 8°C) prevailing during flower development and pollination ranged from 7 to 12 g/panicle. The differences in seed production and SS among A×B crosses did not depend on the amount and viability of pollen.


2014 ◽  
Vol 11 (1) ◽  
pp. 23-33 ◽  
Author(s):  
CL Sharma ◽  
NK Singh ◽  
AK Mall ◽  
K Kumar ◽  
ON Singh

Seventy five hybrids generated from crossing three cytoplasmic male sterile lines with 25 testers were studied along with parents for combining ability and gene action involved in expression of characters in rice. The GCA and SCA effects were significant for all the characters except seedling height, indicating the importance of both additive and non additive genetic components. The ratio of gca and sca variance was less than unity for all the characters also indicated preponderance of non additive genetic variance and suggested good prospects of the exploitation of variation through hybrid breeding. Amongst the parental lines, UPR-2080-24-1-R, IR-60076-1-R, PNR-165-10-6-R and IR-58025- A were found to be good general combiners which can be taken up to generate desirable segregates for further selection. None of the crosses showed significant sca effects for all the characters. On the basis of per se performance and high sca effects, IR-58025-A x CSRC-50-2-1-4-BR, PMS-10-A x IR-42688-2-118-6-3, RPMS-100-A x UPRI-92-79-R and NMS-4-A x IR-32419-28-3-1-3-R were good specific combiners for grain yield plant-1 and their components which could be used for exploitation of heterosis for yield. DOI: http://dx.doi.org/10.3329/sja.v11i1.18372 SAARC J. Agri., 11(1): 23-33 (2013)


Sign in / Sign up

Export Citation Format

Share Document