scholarly journals Suppression of Pain in the Late Phase of Chronic Trigeminal Neuropathic Pain Failed to Rescue the Decision-Making Deficits in Rats

2021 ◽  
Vol 22 (15) ◽  
pp. 7846
Author(s):  
Suresh Kanna Murugappan ◽  
Li Xie ◽  
Heung Yan Wong ◽  
Zafar Iqbal ◽  
Zhuogui Lei ◽  
...  

Trigeminal neuropathic pain (TNP) led to vital cognitive functional deficits such as impaired decision-making abilities in a rat gambling task. Chronic TNP caused hypomyelination in the anterior cingulate cortex (ACC) associated with decreased synchronization between ACC spikes and basal lateral amygdala (BLA) theta oscillations. The aim of this study was to investigate the effect of pain suppression on cognitive impairment in the early or late phases of TNP. Blocking afferent signals with a tetrodotoxin (TTX)-ELVAX implanted immediately following nerve lesion suppressed the allodynia and rescued decision-making deficits. In contrast, the TTX used at a later phase could not suppress the allodynia nor rescue decision-making deficits. Intra-ACC administration of riluzole reduced the ACC neural sensitization but failed to restore ACC-BLA spike-field phase synchrony during the late stages of chronic neuropathic pain. Riluzole suppressed allodynia but failed to rescue the decision-making deficits during the late phase of TNP, suggesting that early pain relief is important for recovering from pain-related cognitive impairments. The functional disturbances in ACC neural circuitry may be relevant causes for the deficits in decision making in the chronic TNP state.

2015 ◽  
Vol 38 (6) ◽  
pp. E11 ◽  
Author(s):  
Jennifer F. Russo ◽  
Sameer A. Sheth

Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.


Cell Reports ◽  
2021 ◽  
Vol 37 (9) ◽  
pp. 109933
Author(s):  
Kevin Lançon ◽  
Chaoling Qu ◽  
Edita Navratilova ◽  
Frank Porreca ◽  
Philippe Séguéla

Neurology ◽  
2018 ◽  
Vol 91 (14) ◽  
pp. e1285-e1294 ◽  
Author(s):  
Libat Weizman ◽  
Lior Dayan ◽  
Silviu Brill ◽  
Hadas Nahman-Averbuch ◽  
Talma Hendler ◽  
...  

ObjectiveTo characterize the functional brain changes involved in δ-9-tetrahydrocannabinol (THC) modulation of chronic neuropathic pain.MethodsFifteen patients with chronic radicular neuropathic pain participated in a randomized, double-blind, placebo-controlled trial employing a counterbalanced, within-subjects design. Pain assessments and functional resting state brain scans were performed at baseline and after sublingual THC administration. We examined functional connectivity of the anterior cingulate cortex (ACC) and pain-related network dynamics using graph theory measures.ResultsTHC significantly reduced patients' pain compared to placebo. THC-induced analgesia was correlated with a reduction in functional connectivity between the anterior cingulate cortex (ACC) and the sensorimotor cortex. Moreover, the degree of reduction was predictive of the response to THC. Graph theory analyses of local measures demonstrated reduction in network connectivity in areas involved in pain processing, and specifically in the dorsolateral prefrontal cortex (DLPFC), which were correlated with individual pain reduction.ConclusionThese results suggest that the ACC and DLPFC, 2 major cognitive-emotional modulation areas, and their connections to somatosensory areas, are functionally involved in the analgesic effect of THC in chronic pain. This effect may therefore be mediated through induction of functional disconnection between regulatory high-order affective regions and the sensorimotor cortex. Moreover, baseline functional connectivity between these brain areas may serve as a predictor for the extent of pain relief induced by THC.


Sign in / Sign up

Export Citation Format

Share Document