scholarly journals Cannabis analgesia in chronic neuropathic pain is associated with altered brain connectivity

Neurology ◽  
2018 ◽  
Vol 91 (14) ◽  
pp. e1285-e1294 ◽  
Author(s):  
Libat Weizman ◽  
Lior Dayan ◽  
Silviu Brill ◽  
Hadas Nahman-Averbuch ◽  
Talma Hendler ◽  
...  

ObjectiveTo characterize the functional brain changes involved in δ-9-tetrahydrocannabinol (THC) modulation of chronic neuropathic pain.MethodsFifteen patients with chronic radicular neuropathic pain participated in a randomized, double-blind, placebo-controlled trial employing a counterbalanced, within-subjects design. Pain assessments and functional resting state brain scans were performed at baseline and after sublingual THC administration. We examined functional connectivity of the anterior cingulate cortex (ACC) and pain-related network dynamics using graph theory measures.ResultsTHC significantly reduced patients' pain compared to placebo. THC-induced analgesia was correlated with a reduction in functional connectivity between the anterior cingulate cortex (ACC) and the sensorimotor cortex. Moreover, the degree of reduction was predictive of the response to THC. Graph theory analyses of local measures demonstrated reduction in network connectivity in areas involved in pain processing, and specifically in the dorsolateral prefrontal cortex (DLPFC), which were correlated with individual pain reduction.ConclusionThese results suggest that the ACC and DLPFC, 2 major cognitive-emotional modulation areas, and their connections to somatosensory areas, are functionally involved in the analgesic effect of THC in chronic pain. This effect may therefore be mediated through induction of functional disconnection between regulatory high-order affective regions and the sensorimotor cortex. Moreover, baseline functional connectivity between these brain areas may serve as a predictor for the extent of pain relief induced by THC.

2015 ◽  
Vol 38 (6) ◽  
pp. E11 ◽  
Author(s):  
Jennifer F. Russo ◽  
Sameer A. Sheth

Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.


Cell Reports ◽  
2021 ◽  
Vol 37 (9) ◽  
pp. 109933
Author(s):  
Kevin Lançon ◽  
Chaoling Qu ◽  
Edita Navratilova ◽  
Frank Porreca ◽  
Philippe Séguéla

2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2058-2075
Author(s):  
Yu Zhang ◽  
Shiwei Jiang ◽  
Fei Liao ◽  
Zhifeng Huang ◽  
Xin Yang ◽  
...  

2020 ◽  
Author(s):  
Hayley Gilbertson ◽  
Lin Fang ◽  
Jeremy A. Andrzejewski ◽  
Joshua M. Carlson

AbstractThe error-related negativity (ERN) is a response-locked event-related potential, occurring approximately 50 ms following an erroneous response at frontocentral electrode sites. Source localization and functional magnetic resonance imaging (fMRI) research indicate that the ERN is likely generated by activity in the dorsal anterior cingulate cortex (dACC). The dACC is thought to be a part of a broader network of brain regions that collectively comprise an error-monitoring network. However, little is known about how intrinsic connectivity within the dACC-based error-monitoring network contributes to variability in ERN amplitude. The purpose of this study was to assess the relationship between dACC functional connectivity and ERN amplitude. In a sample of 53 highly trait-anxious individuals, the ERN was elicited in a flanker task and functional connectivity was assessed in a 10-minute resting-state fMRI scan. Results suggest that the strength of dACC seeded functional connectivity with the supplementary motor area is correlated with the ΔERN (i.e., incorrect – correct responses) amplitude such that greater ΔERN amplitude was accompanied by greater functional coupling between these regions. In addition to the dACC, exploratory analyses found that functional connectivity in the caudate, cerebellum, and a number of regions in the error-monitoring network were linked to variability in ΔERN amplitude. In sum, ERN amplitude appears to be related to the strength of functional connectivity between error-monitoring and motor control regions of the brain.


Sign in / Sign up

Export Citation Format

Share Document