scholarly journals Methods of Attenuating Ischemia-Reperfusion Injury in Liver Transplantation for Hepatocellular Carcinoma

2021 ◽  
Vol 22 (15) ◽  
pp. 8229
Author(s):  
Łukasz Masior ◽  
Michał Grąt

Hepatocellular carcinoma (HCC) is one of the most frequent indications for liver transplantation. However, the transplantation is ultimately associated with the occurrence of ischemia-reperfusion injury (IRI). It affects not only the function of the graft but also significantly worsens the oncological results. Various methods have been used so far to manage IRI. These include the non-invasive approach (pharmacotherapy) and more advanced options encompassing various types of liver conditioning and machine perfusion. Strategies aimed at shortening ischemic times and better organ allocation pathways are still under development as well. This article presents the mechanisms responsible for IRI, its impact on treatment outcomes, and strategies to mitigate it. An extensive review of the relevant literature using MEDLINE (PubMed) and Scopus databases until September 2020 was conducted. Only full-text articles written in English were included. The following search terms were used: “ischemia reperfusion injury”, “liver transplantation”, “hepatocellular carcinoma”, “preconditioning”, “machine perfusion”.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Ishii ◽  
Naoto Matsuno ◽  
Mikako Gochi ◽  
Hiroyoshi Iwata ◽  
Tatsuya Shonaka ◽  
...  

AbstractThis study examined the efficacy of end-ischemic hypothermic oxygenated machine perfusion preservation (HOPE) using an originally developed machine perfusion system for split-liver transplantation. Porcine split-liver grafts were created via 75% liver resection after 10 min of warm ischemia. In Group 1, grafts were preserved by simple cold storage (CS) for 8 h (CS group; n = 4). In Group 2, grafts were preserved by simple CS for 6 h and end-ischemic HOPE for 2 h (HOPE group; n = 5). All grafts were evaluated using an isolated ex vivo reperfusion model with autologous blood for 2 h. Biochemical markers (aspartate aminotransferase and lactate dehydrogenase levels) were significantly better immediately after reperfusion in the HOPE group than in the CS group. Furthermore, the HOPE group had a better histological score. The levels of inflammatory cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-10) were significantly lower after reperfusion in the HOPE group. Therefore, we concluded that end-ischemic HOPE for split-liver transplantation can aid in recovering the graft function and reducing ischemia–reperfusion injury. HOPE, using our originally developed machine perfusion system, is safe and can improve graft function while attenuating liver injury due to preservation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kei Hayashida ◽  
Ryosuke Takegawa ◽  
Muhammad Shoaib ◽  
Tomoaki Aoki ◽  
Rishabh C. Choudhary ◽  
...  

Abstract Background Mitochondria are essential organelles that provide energy for cellular functions, participate in cellular signaling and growth, and facilitate cell death. Based on their multifactorial roles, mitochondria are also critical in the progression of critical illnesses. Transplantation of mitochondria has been reported as a potential promising approach to treat critical illnesses, particularly ischemia reperfusion injury (IRI). However, a systematic review of the relevant literature has not been conducted to date. Here, we systematically reviewed the animal and human studies relevant to IRI to summarize the evidence for mitochondrial transplantation. Methods We searched MEDLINE, the Cochrane library, and Embase and performed a systematic review of mitochondrial transplantation for IRI in both preclinical and clinical studies. We developed a search strategy using a combination of keywords and Medical Subject Heading/Emtree terms. Studies including cell-mediated transfer of mitochondria as a transfer method were excluded. Data were extracted to a tailored template, and data synthesis was descriptive because the data were not suitable for meta-analysis. Results Overall, we identified 20 animal studies and two human studies. Among animal studies, 14 (70%) studies focused on either brain or heart IRI. Both autograft and allograft mitochondrial transplantation were used in 17 (85%) animal studies. The designs of the animal studies were heterogeneous in terms of the route of administration, timing of transplantation, and dosage used. Twelve (60%) studies were performed in a blinded manner. All animal studies reported that mitochondrial transplantation markedly mitigated IRI in the target tissues, but there was variation in biological biomarkers and pathological changes. The human studies were conducted with a single-arm, unblinded design, in which autologous mitochondrial transplantation was applied to pediatric patients who required extracorporeal membrane oxygenation (ECMO) for IRI–associated myocardial dysfunction after cardiac surgery. Conclusion The evidence gathered from our systematic review supports the potential beneficial effects of mitochondrial transplantation after IRI, but its clinical translation remains limited. Further investigations are thus required to explore the mechanisms of action and patient outcomes in critical settings after mitochondrial transplantation. Systematic review registration The study was registered at UMIN under the registration number UMIN000043347.


Author(s):  
Alessandro Rodrigo Belon ◽  
Ana Cristina Aoun Tannuri ◽  
Daniel de Albuquerque Rangel Moreira ◽  
Jose Luiz Figueiredo ◽  
Alessandra Matheus da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document