fas pathway
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 17)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanyuan Li ◽  
Chuan Zuo ◽  
Ling Gu

Abstract Background Acquired glucocorticoid (GC) resistance remains the main obstacle in acute lymphoblastic leukemia (ALL) therapy. The aim of the present study was to establish a novel GC-resistant B-ALL cell line and investigate its biological characteristics. Methods A cell culture technique was used to establish the GC-resistant cell line from the parental cell, NALM-6. Molecular and cellular biological techniques including flow cytometry, MTT assay, western blotting, DNA fingerprinting analysis and whole transcriptome sequencing (WTS) were used to characterize the GC-resistant cell lines. Nude mice were used for xenograft studies. Results The GC-resistant cell line, NALM-6/HDR, was established by culturing NALM-6 cells under hypoxia for 5 weeks with a single dexamethasone (Dex) treatment. We subcloned the NALM-6/HDR cell lines, and got 6 monoclone Dex-resistant cell lines, NALM-6/HDR-C1, C3, C4, C5, C6 and C9 with resistance index (RI) ranging from 20,000–50,000. NALM-6/HDR and its monoclone cell line, NALM-6/HDR-C5, exhibited moderate (RI 5–15) to high resistance (RI > 20) to Ara-c; low or no cross-resistance to L-Asp, VCR, DNR, and MTX (RI < 5). STR analysis confirmed that NALM-6/HDR and NALM-6/H were all derived from NALM-6. All these cells derived from NALM-6 showed similar morphology, growth curves, immunophenotype, chromosomal karyotype and tumorigenicity. WTS analysis revealed that the main metabolic differences between NALM-6 or NALM-6/H (GC-sensitive) and NALM-6/HDR (GC-resistant) were lipid and carbohydrates metabolism. Western blotting analysis showed that NALM-6/HDR cells had a low expression of GR and p-GR. Moreover, AMPK, mTORC1, glycolysis and de novo fatty acid synthesis (FAS) pathway were inhibited in NALM-6/HDR when compared with NALM-6. Conclusions NALM-6/HDR cell line may represent a subtype of B-ALL cells in patients who acquired GC and Ara-c resistance during the treatment. These patients may get little benefit from the available therapy target of AMPK, mTORC1, glycolysis and FAS pathway.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 990
Author(s):  
Mifetika Lukitasari ◽  
Mohammad Saifur Rohman ◽  
Dwi Adi Nugroho ◽  
Mukhamad Nur Kholis ◽  
Nila Aisyah Wahyuni ◽  
...  

Background: Insulin resistance has been independently associated with cardiac diseases. A free fatty acid is recently known to induce cardiac insulin resistance due to low-grade inflammation. Therefore, the improvement of free fatty acid levels can also improve cardiac insulin resistance. This study investigated the combination of green tea and decaffeinated-light roasted green coffee extract in improvement of free fatty acid-induced cardiac insulin resistance by improving the adiponectin/FAS pathway. Methods: This study used 25 males Sprague-Dawley rats induced by a high-fat high sucrose diet and injection of low dose streptozotocin to make a metabolic syndrome (MS) rat model and standard chow as healthy control rats. The MS rats were treated with green tea (200 mg/ b. w.), decaffeinated-light roasted green coffee (300 mg/ b. w.), and the combination of both extracts in 9 weeks. Experimental groups in this study were divided into 5 groups: 1) MS (HFHS diet + STZ) group, 2) NC (normal chow) group, 3) GT (green tea extract) group, 4) GC (decaffeinated-light roasted green coffee extract), 5) CM (combination of both extracts) group. Adiponectin and HOMA-IR level was analysed using ELISA, and the gene expression of Adipo-R1, FAS, PI3K, PDK1, Akt, GLUT4 was measured by RT-PCR. Results: The combination of green tea and decaffeinated-light roasted green coffee showed synergistic effects in improving FFA levels. The adiponectin/FAS pathway was attenuated in the CM group. Moreover, the combination also showed improvement in cardiac insulin resistance markers such as IRS1/2, PI3K, PDK1, Akt, and GLUT4. Conclusions:  The combination of green tea and decaffeinated-light roasted green coffee extract improved cardiac insulin resistance better than green tea and green coffee extract administration alone by reducing free fatty acids levels through adiponectin/FAS pathway modulation.


2021 ◽  
Author(s):  
Aude Magerus ◽  
Clara Bercher-Brayer ◽  
Frédéric Rieux-Laucat

2020 ◽  
Vol 266 ◽  
pp. 115089
Author(s):  
Yuting Jiang ◽  
Yanmei Yang ◽  
Chengzhi Zhang ◽  
Wei Huang ◽  
Liaowei Wu ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A100-A101
Author(s):  
Jonathan Boiarsky ◽  
Ranjan Upadhyay ◽  
Judit Svensson-Arvelund ◽  
Aleksandra Wroblewska ◽  
Sherry Bhalla ◽  
...  

BackgroundT-cell based immunotherapies such as CAR-T, bispecific mAb, transgenic T cells and checkpoint blockade have profound efficacy in multiple tumor types but share a common limitation – target antigen (Ag) escape.1 2 One approach to address this limitation has been therapy directed at a ‘parallel’ target (e.g. CD22 after CD19 loss), however, these lineage markers are frequently lost together.3 Here, we describe an alternate, broadly applicable, approach: potentiating fasL/fas-signaling to increase localized bystander killing of Ag-tumor cells and thereby prevent Ag escape.MethodsWe used a CRISPR/Cas9 library to screen for tumor expressed molecules that inhibit or facilitate T-cell killing. We then evaluated one candidate -fas- using murine transgenic T cells, murine and human CAR-T cells, bispecific mAb redirected PBMC, and tumoral RNAseq data from a large CAR-T clinical trial.ResultsGFP-specific (JEDI) CD8 T cells were co-cultured with on-target (GFP+) and bystander (mCherry+) lymphoma cells that had been transfected with a CRISPR/Cas9 library; this screen revealed several tumor-expressed candidate molecules inhibiting or facilitating T-cell killing. Notably, we observed a marked dependence on fas for on-target tumor killing and then, surprisingly, an exquisite dependence on fas for localized bystander tumor killing. (figure 1).Because bystander tumor killing appeared critically fas-dependent, we hypothesized that potentiating fas-signaling might increase bystander killing. An in vitro screen of small molecules that modulate fas-pathway revealed several candidates, including inhibitors of histone deacetylases (HDAC), inhibitors of apoptosis proteins (IAP) and Bcl-2 family members in murine and human systems (figure 2). To validate these candidates, we demonstrated that HDACi increased GFP-specific T cell killing of both on-target and bystander lymphoma cells, in a completely fas-dependent manner (figure 3). Similarly, using a bispecific antibody-based system, we demonstrated increased, fas-dependent, T cell killing of both on-target and bystander human lymphoma cells with inhibitors of IAP and bcl-2 family members (e.g. MCL1).Abstract 90 Figure 1See text for descriptionAbstract 90 Figure 2See text for descriptionAbstract 90 Figure 3See text for descriptionConclusionsT-cell mediated tumor killing can be potentiated with fas pathway modulators. This augmentation improves both fas-dependent Ag+ and Ag-tumor cell death. Further studies of modulating the fas pathway alongside T-cell based immunotherapies are needed as potential treatments to prevent antigen escape and improve patient outcomes.AcknowledgementsWe thank the flow cytometry core facility, microscopy core facility, and the CCMS animal facility at ISMMS.Ethics ApprovalThe studies were approved by The Mount Sinai Institutional Review Board.ReferencesZaretsky J, Garcia-Diaz A, Shin D, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med 2016: 375(9); 819–20.Majzner R, Mackall C. Tumor antigen escape from CAR T-cell therapy. Cancer Discov 2018;8(10):1219–1226.Jacoby E, Nguyen S, Fountaine T, et al. CD19 CAR immune pressure induces B-precusor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 2016; 7:12320.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Fan Hu ◽  
April L. Clevenger ◽  
Peng Zheng ◽  
Qiongye Huang ◽  
Zhaokai Wang

Abstract Background Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. Results The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS pathway genes were not significantly regulated as the DHA content increased. Further, gene expression analysis showed that pathways related to the production of substrates (acetyl-CoA and NADPH) for fatty acid synthesis (the branched-chain amino acid degradation pathway and the pentose phosphate pathway) and genes related to saturated fatty acid biosynthesis (the FAS pathway genes and malic enzyme) were, respectively, upregulated and downregulated. These results indicate that low temperatures increase the DHA content by likely promoting the entry of relatively large amounts of substrates into the PKS pathway. Conclusions In this study, we provide genomic, proteomic, and transcriptomic evidence for the fatty acid synthesis pathway in Schizochytrium and propose a mechanism by which low temperatures promote the accumulation of DHA in Schizochytrium. The high-quality and nearly complete genome sequence of Schizochytrium provides a valuable reference for investigating the regulation of polyunsaturated fatty acid biosynthesis and the evolutionary characteristics of Thraustochytriidae species.


Author(s):  
C. Mikacenic ◽  
P. Bhatraju ◽  
C. Robinson-Cohen ◽  
S. Kosamo ◽  
A.E. Fohner ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 118 ◽  
Author(s):  
Xingyu Zhu ◽  
Shuangfei Li ◽  
Liangxu Liu ◽  
Siting Li ◽  
Yanqing Luo ◽  
...  

Thraustochytriidae sp. have broadly gained attention as a prospective resource for the production of omega-3 fatty acids production in significant quantities. In this study, the whole genome of Thraustochytriidae sp. SZU445, which produces high levels of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA), was sequenced and subjected to protein annotation. The obtained clean reads (63.55 Mb in total) were assembled into 54 contigs and 25 scaffolds, with maximum and minimum lengths of 400 and 0.0054 Mb, respectively. A total of 3513 genes (24.84%) were identified, which could be classified into six pathways and 44 pathway groups, of which 68 genes (1.93%) were involved in lipid metabolism. In the Gene Ontology database, 22,436 genes were annotated as cellular component (8579 genes, 38.24%), molecular function (5236 genes, 23.34%), and biological process (8621 genes, 38.42%). Four enzymes corresponding to the classic fatty acid synthase (FAS) pathway and three enzymes corresponding to the classic polyketide synthase (PKS) pathway were identified in Thraustochytriidae sp. SZU445. Although PKS pathway-associated dehydratase and isomerase enzymes were not detected in Thraustochytriidae sp. SZU445, a putative DHA- and DPA-specific fatty acid pathway was identified.


Sign in / Sign up

Export Citation Format

Share Document