scholarly journals Beneficial effects of end-ischemic oxygenated machine perfusion preservation for split-liver transplantation in recovering graft function and reducing ischemia–reperfusion injury

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Ishii ◽  
Naoto Matsuno ◽  
Mikako Gochi ◽  
Hiroyoshi Iwata ◽  
Tatsuya Shonaka ◽  
...  

AbstractThis study examined the efficacy of end-ischemic hypothermic oxygenated machine perfusion preservation (HOPE) using an originally developed machine perfusion system for split-liver transplantation. Porcine split-liver grafts were created via 75% liver resection after 10 min of warm ischemia. In Group 1, grafts were preserved by simple cold storage (CS) for 8 h (CS group; n = 4). In Group 2, grafts were preserved by simple CS for 6 h and end-ischemic HOPE for 2 h (HOPE group; n = 5). All grafts were evaluated using an isolated ex vivo reperfusion model with autologous blood for 2 h. Biochemical markers (aspartate aminotransferase and lactate dehydrogenase levels) were significantly better immediately after reperfusion in the HOPE group than in the CS group. Furthermore, the HOPE group had a better histological score. The levels of inflammatory cytokines (tumor necrosis factor-α, interferon-γ, interleukin-1β, and interleukin-10) were significantly lower after reperfusion in the HOPE group. Therefore, we concluded that end-ischemic HOPE for split-liver transplantation can aid in recovering the graft function and reducing ischemia–reperfusion injury. HOPE, using our originally developed machine perfusion system, is safe and can improve graft function while attenuating liver injury due to preservation.

2020 ◽  
Vol 21 (9) ◽  
pp. 3132 ◽  
Author(s):  
Julia Hofmann ◽  
Giorgi Otarashvili ◽  
Andras Meszaros ◽  
Susanne Ebner ◽  
Annemarie Weissenbacher ◽  
...  

Mitochondria sense changes resulting from the ischemia and subsequent reperfusion of an organ and mitochondrial reactive oxygen species (ROS) production initiates a series of events, which over time result in the development of full-fledged ischemia-reperfusion injury (IRI), severely affecting graft function and survival after transplantation. ROS activate the innate immune system, regulate cell death, impair mitochondrial and cellular performance and hence organ function. Arresting the development of IRI before the onset of ROS production is currently not feasible and clinicians are faced with limiting the consequences. Ex vivo machine perfusion has opened the possibility to ameliorate or antagonize the development of IRI and may be particularly beneficial for extended criteria donor organs. The molecular events occurring during machine perfusion remain incompletely understood. Accumulation of succinate and depletion of adenosine triphosphate (ATP) have been considered key mechanisms in the initiation; however, a plethora of molecular events contribute to the final tissue damage. Here we discuss how understanding mitochondrial dysfunction linked to IRI may help to develop novel strategies for the prevention of ROS-initiated damage in the evolving era of machine perfusion.


2005 ◽  
Vol 11 (10) ◽  
pp. 1214-1222 ◽  
Author(s):  
Jens G. Brockmann ◽  
Christian August ◽  
Heiner H. Wolters ◽  
Ralf Hömme ◽  
Daniel Palmes ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 846 ◽  
Author(s):  
Zoltan Czigany ◽  
Isabella Lurje ◽  
Moritz Schmelzle ◽  
Wenzel Schöning ◽  
Robert Öllinger ◽  
...  

Ischemia-reperfusion injury (IRI) constitutes a significant source of morbidity and mortality after orthotopic liver transplantation (OLT). The allograft is metabolically impaired during warm and cold ischemia and is further damaged by a paradox reperfusion injury after revascularization and reoxygenation. Short-term and long-term complications including post-reperfusion syndrome, delayed graft function, and immune activation have been associated with IRI. Due to the current critical organ shortage, extended criteria grafts are increasingly considered for transplantation, however, with an elevated risk to develop significant features of IRI. In recent years, ex vivo machine perfusion (MP) of the donor liver has witnessed significant advancements. Here, we describe the concept of hypothermic (oxygenated) machine perfusion (HMP/HOPE) approaches and highlight which allografts may benefit from this technology. This review also summarizes clinical applications and the main aspects of ongoing randomized controlled trials on hypothermic perfusion. The mechanistic aspects of IRI and hypothermic MP—which include tissue energy replenishment, optimization of mitochondrial function, and the reduction of oxidative and inflammatory damage following reperfusion—will be comprehensively discussed within the context of current preclinical and clinical evidence. Finally, we highlight novel trends and future perspectives in the field of hypothermic MP in the context of recent findings of basic and translational research.


2021 ◽  
Vol 22 (15) ◽  
pp. 8210
Author(s):  
Hui Liu ◽  
Kwan Man

Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.


2021 ◽  
Vol 22 (15) ◽  
pp. 8229
Author(s):  
Łukasz Masior ◽  
Michał Grąt

Hepatocellular carcinoma (HCC) is one of the most frequent indications for liver transplantation. However, the transplantation is ultimately associated with the occurrence of ischemia-reperfusion injury (IRI). It affects not only the function of the graft but also significantly worsens the oncological results. Various methods have been used so far to manage IRI. These include the non-invasive approach (pharmacotherapy) and more advanced options encompassing various types of liver conditioning and machine perfusion. Strategies aimed at shortening ischemic times and better organ allocation pathways are still under development as well. This article presents the mechanisms responsible for IRI, its impact on treatment outcomes, and strategies to mitigate it. An extensive review of the relevant literature using MEDLINE (PubMed) and Scopus databases until September 2020 was conducted. Only full-text articles written in English were included. The following search terms were used: “ischemia reperfusion injury”, “liver transplantation”, “hepatocellular carcinoma”, “preconditioning”, “machine perfusion”.


Author(s):  
S. V. Zhuravel ◽  
N. K. Kuznetsova ◽  
V. E. Aleksandrova ◽  
I. I. Goncharova

Background. A pressing issue is the choice of an anesthetic agent for liver transplantation. The mechanism of the organprotective properties of desflurane and sevoflurane is not fully understood. It is important to understand the effects of desflurane and sevoflurane on the severity of ischemia-reperfusion injury of the liver graftAim. To study the effect of desflurane and sevoflurane on the intraoperative and early postoperative period in liver transplantation.Material and methods. The study included 47 patients with liver cirrhosis of various etiologies who underwent cadaveric liver transplantation between February and December 2020. The groups compared in the study included 24 patients who received desflurane and 23 patients who received sevoflurane.Results. There were no statistically significant differences in the effect of desflurane and sevoflurane on hemodynamic parameters, on the need for vasopressor drugs. Episodes of bradycardia and cardiac arrhythmias were significantly more frequent when using sevoflurane. Patients were extubated significantly faster after surgery in the desflurane group. In the early postoperative period, desflurane and sevoflurane did not adversely affect significantly the liver graft function and the degree of its ischemia-reperfusion injury. The groups appeared comparable in rates of using the renal replacement therapy, the incidence of the graft dysfunction development in the postoperative period, and the surgery outcomes.Conclusions. The use of modern inhalation anesthetics desflurane and sevoflurane to maintain anesthesia during liver transplantation does not adversely affect the course of the intraoperative and early postoperative period.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ruta Zulpaite ◽  
Povilas Miknevicius ◽  
Bettina Leber ◽  
Kestutis Strupas ◽  
Philipp Stiegler ◽  
...  

Kidney transplantation remains the gold standard treatment for patients suffering from end-stage kidney disease. To meet the constantly growing organ demands grafts donated after circulatory death (DCD) or retrieved from extended criteria donors (ECD) are increasingly utilized. Not surprisingly, usage of those organs is challenging due to their susceptibility to ischemia-reperfusion injury, high immunogenicity, and demanding immune regulation after implantation. Lately, a lot of effort has been put into improvement of kidney preservation strategies. After demonstrating a definite advantage over static cold storage in reduction of delayed graft function rates in randomized-controlled clinical trials, hypothermic machine perfusion has already found its place in clinical practice of kidney transplantation. Nevertheless, an active investigation of perfusion variables, such as temperature (normothermic or subnormothermic), oxygen supply and perfusate composition, is already bringing evidence that ex-vivo machine perfusion has a potential not only to maintain kidney viability, but also serve as a platform for organ conditioning, targeted treatment and even improve its quality. Many different therapies, including pharmacological agents, gene therapy, mesenchymal stromal cells, or nanoparticles (NPs), have been successfully delivered directly to the kidney during ex-vivo machine perfusion in experimental models, making a big step toward achievement of two main goals in transplant surgery: minimization of graft ischemia-reperfusion injury and reduction of immunogenicity (or even reaching tolerance). In this comprehensive review current state of evidence regarding ex-vivo kidney machine perfusion and its capacity in kidney graft treatment is presented. Moreover, challenges in application of these novel techniques in clinical practice are discussed.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Linhe Wang ◽  
Jie Li ◽  
Shuai He ◽  
Yang Liu ◽  
Haitian Chen ◽  
...  

AbstractIschemia–reperfusion injury (IRI) remains the major reason for impaired donor graft function and increased mortality post-liver transplantation. The mechanism of IRI involves multiple pathophysiological processes and numerous types of cells. However, a systematic and comprehensive single-cell transcriptional profile of intrahepatic cells during liver transplantation is still unclear. We performed a single-cell transcriptome analysis of 14,313 cells from liver tissues collected from pre-procurement, at the end of preservation and 2 h post-reperfusion. We made detailed annotations of mononuclear phagocyte, endothelial cell, NK/T, B and plasma cell clusters, and we described the dynamic changes of the transcriptome of these clusters during IRI and the interaction between mononuclear phagocyte clusters and other cell clusters. In addition, we found that TNFAIP3 interacting protein 3 (TNIP3), specifically and highly expressed in Kupffer cell clusters post-reperfusion, may have a protective effect on IRI. In summary, our study provides the first dynamic transcriptome map of intrahepatic cell clusters during liver transplantation at single-cell resolution.


Sign in / Sign up

Export Citation Format

Share Document