scholarly journals Derivation of Mouse Parthenogenetic Advanced Stem Cells

2021 ◽  
Vol 22 (16) ◽  
pp. 8976
Author(s):  
Mengyi Wei ◽  
Jindun Zhang ◽  
Jia Liu ◽  
Chaoyue Zhao ◽  
Shuo Cao ◽  
...  

Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.

Reproduction ◽  
2001 ◽  
pp. 729-733 ◽  
Author(s):  
T Amano ◽  
Y Kato ◽  
Y Tsunoda

The developmental potential of enucleated mouse oocytes receiving embryonic stem cells from ten lines with either the same or different genetic backgrounds using the cell fusion method was examined in vitro and in vivo. The development of nuclear-transferred oocytes into blastocysts was high (34-88%). However, there was no clear correlation between development into blastocysts after nuclear transfer and the chimaera formation rate of embryonic stem cells. The development into live young was low (1-3%) in all cell lines and 14 of 19 young died shortly after birth. Most of the live young had morphological abnormalities. Of the five remaining mice, two died at days 23 and 30 after birth, but the other three mice are still active at days 359 (mouse 1) and 338 (mice 4 and 5) after birth, with normal fertility. However, the reasons for the abnormalities and postnatal death of embryonic stem cell-derived mice are unknown.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1473-1482 ◽  
Author(s):  
N.D. Allen ◽  
S.C. Barton ◽  
K. Hilton ◽  
M.L. Norris ◽  
M.A. Surani

A detailed analysis of the developmental potential of parthenogenetic embryonic stem cells (PGES) was made in vivo and in vitro, and a comparison was made with the development of cells from parthenogenetic embryos (PG). In vivo, in chimeras with normal host cells (N), PGES cells showed a restricted tissue distribution consistent with that of PG cells, suggesting faithful imprinting in PGES cells with respect to genes involved in lineage allocation and differentiation. Restricted developmental potential was also observed in teratomas formed by ectopic transfer under the kidney capsule. In contrast, the classic phenotype of growth retardation normally observed in PG<==>N chimeras was not seen, suggesting aberrant regulation in PGES cells of genes involved in growth regulation. We also analysed the expression of known imprinted genes after ES cell differentiation. Igf2, H19 and Igf2r were all appropriately expressed in the PGES derived cells following induction of differentiation in vitro with all-trans retinoic acid or DMSO, when compared with control (D3) and androgenetic ES cells (AGES). Interestingly, H19 was found to be expressed at high levels following differentiation of the AGES cells. Due to the unexpected normal growth regulation of PGES<==>N chimeras we also examined Igf2 expression in PGES derived cells differentiated in vivo and found that this gene was still repressed. Our studies show that PGES cells provide a valuable in vitro model system to study the effects of imprinting on cell differentiation and they also provide invaluable material for extensive molecular studies on imprinted genes. In addition, the aberrant growth phenotype observed in chimeras has implications for mechanisms that regulate the somatic establishment and maintenance of some imprints. This is of particular interest as aberrant imprinting has recently been invoked in the etiology of some human diseases.


2007 ◽  
Vol 236 (6) ◽  
pp. 1547-1557 ◽  
Author(s):  
Wenchu Lin ◽  
Geraldine Srajer ◽  
Yvonne A. Evrard ◽  
Huy M. Phan ◽  
Yas Furuta ◽  
...  

2014 ◽  
Vol 23 (17) ◽  
pp. 2014-2029 ◽  
Author(s):  
Anne-Clémence Veillard ◽  
Hendrik Marks ◽  
Andreia Sofia Bernardo ◽  
Luc Jouneau ◽  
Denis Laloë ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document