scholarly journals Cannabinoid Receptor Type 1 Regulates Drug Reward Behavior via Glutamate Decarboxylase 67 Transcription

2021 ◽  
Vol 22 (19) ◽  
pp. 10486
Author(s):  
Sun Mi Gu ◽  
Sowoon Seo ◽  
Daejin Park ◽  
Sanghyeon Kim ◽  
Santosh Lamichhane ◽  
...  

Interaction of cannabinoid receptor type 1 (CB1) and GABAergic neuronal activity is involved in drug abuse-related behavior. However, its role in drug-dependent Pavlovian conditioning is not well understood. In this study, we aimed to evaluate the effects of a CB1 agonist, JWH-210, on the development of conditioned place preference (CPP)-induced by methamphetamine (METH). Pretreatment with a synthetic cannabinoid, JWH-210 (CB1 agonist), increased METH-induced CPP score and METH-induced dopamine release in acute striatal slices. Interestingly, CB1 was expressed in glutamate decarboxylase 67 (GAD67) positive cells, and overexpression of CB1 increased GAD67 expression, while CB1 knockdown reduced GAD67 expression in vivo and in vitro. GAD67 is known as an enzyme involved in the synthesis of GABA. CB1 knockdown in the mice striatum increased METH-induced CPP. When GAD67 decreased in the mice striatum, mRNA level of CB1 did not change, suggesting that CB1 can regulate GAD67 expression. GAD67 knockdown in the mouse striatum augmented apomorphine (dopamine receptor D2 agonist)–induced climbing behavior and METH-induced CPP score. Moreover, in the human brain, mRNA level of GAD67 was found to be decreased in drug users. Therefore, we suggest that CB1 potentiates METH-induced CPP through inhibitory GABAergic regulation of dopaminergic neuronal activity.

2017 ◽  
Vol 112 (6) ◽  
pp. 933-939 ◽  
Author(s):  
Andrzej Wasilewski ◽  
Urszula Lewandowska ◽  
Paula Mosinska ◽  
Cezary Watala ◽  
Martin Storr ◽  
...  

2020 ◽  
Vol 34 (4) ◽  
pp. 429-440
Author(s):  
Lucas Gomes-de-Souza ◽  
Willian Costa-Ferreira ◽  
Leandro A Oliveira ◽  
Ricardo Benini ◽  
Carlos C Crestani

Background: Endocannabinoid neurotransmission in the bed nucleus of the stria terminalis is involved in the control of cardiovascular responses to stress. However, the local mechanisms involved is this regulation are not known. Aims: The purpose of this study was to assess an interaction of bed nucleus of the stria terminalis endocannabinoid neurotransmission with local nitrergic signaling, as well as to investigate the involvement of local N-methyl-D-aspartate glutamate receptor and nitric oxide signaling in the control of cardiovascular responses to acute restraint stress by bed nucleus of the stria terminalis endocannabinoid neurotransmission in rats. Methods: The first protocol evaluated the effect of intra-bed nucleus of the stria terminalis microinjection of the selective cannabinoid receptor type 1 receptor antagonist AM251 in nitrite/nitrate content in the bed nucleus of the stria terminalis following restraint stress. The other protocols evaluated the impact of local pretreatment with the selective N-methyl-D-aspartate glutamate receptor antagonist LY235959, the selective neuronal nitric oxide synthase inhibitor Nω-propyl-L-arginine, the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or the protein kinase G inhibitor KT5823 in restraint-evoked cardiovascular changes following bed nucleus of the stria terminalis treatment with AM251. Results: Bilateral microinjection of AM251 into the bed nucleus of the stria terminalis increased local nitric oxide release during restraint stress. Bed nucleus of the stria terminalis treatment with the cannabinoid receptor type 1 receptor antagonist also enhanced the tachycardia caused by restraint stress, but without affecting arterial pressure increase and sympathetic-mediated cutaneous vasoconstriction. The facilitation of restraint-evoked tachycardia following bed nucleus of the stria terminalis treatment with the cannabinoid receptor type 1 receptor antagonist was completely inhibited by local pretreatment with LY235959, Nω-propyl-L-arginine, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, or KT5823. Conclusions: Our results provide evidence that bed nucleus of the stria terminalis endocannabinoid neurotransmission inhibits local N-methyl-D-aspartate/neuronal nitric oxide synthase/soluble guanylate cyclase/protein kinase G signaling, and this mechanism is involved in the control of the cardiovascular responses to stress.


Author(s):  
Trenton C. Simmons ◽  
Sara M. Freeman ◽  
Nicholas S. Lackey ◽  
Brooke K. Dreyer ◽  
Devanand S. Manoli ◽  
...  

2018 ◽  
Vol 92 (9) ◽  
pp. 2885-2896 ◽  
Author(s):  
Yaochen Zhang ◽  
Don-Kyu Kim ◽  
Yoon Seok Jung ◽  
Yong-Hoon Kim ◽  
Yong Soo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document