scholarly journals Accumulation of 4-Deoxy-7-Hydroxytrichothecenes, but Not 4,7-Dihydroxytrichothecenes, in Axenic Culture of a Transgenic Nivalenol Chemotype Expressing the NX-type FgTri1 Gene

2021 ◽  
Vol 22 (21) ◽  
pp. 11428
Author(s):  
Kazuyuki Maeda ◽  
Yuichi Nakajima ◽  
Yoshiaki Koizumi ◽  
Naoko Takahashi-Ando ◽  
Makoto Kimura ◽  
...  

Fusarium graminearum species complex produces type B trichothecenes oxygenated at C-7. In axenic liquid culture, F. graminearum mainly accumulates one of the three types of trichothecenes, namely 3-acetyldeoxyinvalenol, 15-acetyldeoxyinvalenol, or mixtures of 4,15-diacetylnivalenol/4-acetylnivalenol, depending on each strain’s genetic background. The acetyl groups of these trichothecenes are slowly deacetylated to give deoxynivalenol (DON) or nivalenol (NIV) on solid medium culture. Due to the evolution of F. graminearum FgTri1, encoding a cytochrome P450 monooxygenase responsible for hydroxylation at both C-7 and C-8, new derivatives of DON, designated as NX-type trichothecenes, have recently emerged. To assess the risks of emergence of new NX-type trichothecenes, we examined the effects of replacing FgTri1 in the three chemotypes with FgTri1_NX chemotype, which encodes a cytochrome P450 monooxygenase that can only hydroxylate C-7 of trichothecenes. Similar to the transgenic DON chemotypes, the transgenic NIV chemotype strain accumulated NX-type 4-deoxytrichothecenes in axenic liquid culture. C-4 oxygenated trichothecenes were marginal, despite the presence of a functional FgTri13 encoding a C-4 hydroxylase. At present, outcrossing of the currently occurring NX chemotype with NIV chemotype strains of F. graminearum in the natural environment likely will not yield a new strain that produces a C-4 oxygenated NX-type trichothecene.

2021 ◽  
Author(s):  
Ansgar Bokel ◽  
Michael C. Hutter ◽  
Vlada B. Urlacher

Engineered cytochrome P450 monooxygenase CYP154E1 enables the effective synthesis of the potential antidepressant (2R,6R)-hydroxynorketamine via N-demethylation and regio- and stereoselective hydroxylation of (R)-ketamine.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Erin M. Ostrem Loss ◽  
Mi-Kyung Lee ◽  
Ming-Yueh Wu ◽  
Julia Martien ◽  
Wanping Chen ◽  
...  

ABSTRACT Soil-dwelling fungal species possess the versatile metabolic capability to degrade complex organic compounds that are toxic to humans, yet the mechanisms they employ remain largely unknown. Benzo[a]pyrene (BaP) is a pervasive carcinogenic contaminant, posing a significant concern for human health. Here, we report that several Aspergillus species are capable of degrading BaP. Exposing Aspergillus nidulans cells to BaP results in transcriptomic and metabolic changes associated with cellular growth and energy generation, implying that the fungus utilizes BaP as a growth substrate. Importantly, we identify and characterize the conserved bapA gene encoding a cytochrome P450 monooxygenase that is necessary for the metabolic utilization of BaP in Aspergillus. We further demonstrate that the fungal NF-κB-type velvet regulators VeA and VelB are required for proper expression of bapA in response to nutrient limitation and BaP degradation in A. nidulans. Our study illuminates fundamental knowledge of fungal BaP metabolism and provides novel insights into enhancing bioremediation potential. IMPORTANCE We are increasingly exposed to environmental pollutants, including the carcinogen benzo[a]pyrene (BaP), which has prompted extensive research into human metabolism of toxicants. However, little is known about metabolic mechanisms employed by fungi that are able to use some toxic pollutants as the substrates for growth, leaving innocuous by-products. This study systemically demonstrates that a common soil-dwelling fungus is able to use benzo[a]pyrene as food, which results in expression and metabolic changes associated with growth and energy generation. Importantly, this study reveals key components of the metabolic utilization of BaP, notably a cytochrome P450 monooxygenase and the fungal NF-κB-type transcriptional regulators. Our study advances fundamental knowledge of fungal BaP metabolism and provides novel insight into designing and implementing enhanced bioremediation strategies.


2015 ◽  
Vol 113 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Rohan Karande ◽  
Linde Debor ◽  
Diego Salamanca ◽  
Fabian Bogdahn ◽  
Karl-Heinrich Engesser ◽  
...  

2010 ◽  
Vol 10 (6) ◽  
pp. 791-791 ◽  
Author(s):  
Inge N.A. Van Bogaert ◽  
Marjan De Mey ◽  
Dirk Develter ◽  
Wim Soetaert ◽  
Erick J. Vandamme

2009 ◽  
Vol 75 (12) ◽  
pp. 4202-4205 ◽  
Author(s):  
Wei Wang ◽  
Feng-Qing Wang ◽  
Dong-Zhi Wei

ABSTRACT A new cytochrome P450 monooxygenase, FcpC, from Streptomyces virginiae IBL-14 has been identified. This enzyme is found to be responsible for the bioconversion of a pyrano-spiro steroid (diosgenone) to a rare nuatigenin-type spiro steroid (isonuatigenone), which is a novel C-25-hydroxylated diosgenone derivative. A whole-cell P450 system was developed for the production of isonuatigenone via the expression of the complete three-component electron transfer chain in an Escherichia coli strain.


2010 ◽  
Vol 89 (5) ◽  
pp. 1475-1485 ◽  
Author(s):  
Anett Schallmey ◽  
Gijs den Besten ◽  
Ite G. P. Teune ◽  
Roga F. Kembaren ◽  
Dick B. Janssen

Sign in / Sign up

Export Citation Format

Share Document