scholarly journals New Insights into the Efficacy of Aspalathin and Other Related Phytochemicals in Type 2 Diabetes—A Review

2021 ◽  
Vol 23 (1) ◽  
pp. 356
Author(s):  
Christo J. F. Muller ◽  
Elizabeth Joubert ◽  
Nireshni Chellan ◽  
Yutaka Miura ◽  
Kazumi Yagasaki

In the pursuit of bioactive phytochemicals as a therapeutic strategy to manage metabolic risk factors for type 2 diabetes (T2D), aspalathin, C-glucosyl dihydrochalcone from rooibos (Aspalathus linearis), has received much attention, along with its C-glucosyl flavone derivatives and phlorizin, the apple O-glucosyl dihydrochalcone well-known for its antidiabetic properties. We provided context for dietary exposure by highlighting dietary sources, compound stability during processing, bioavailability and microbial biotransformation. The review covered the role of these compounds in attenuating insulin resistance and enhancing glucose metabolism, alleviating gut dysbiosis and associated oxidative stress and inflammation, and hyperuricemia associated with T2D, focusing largely on the literature of the past 5 years. A key focus of this review was on emerging targets in the management of T2D, as highlighted in the recent literature, including enhancing of the insulin receptor and insulin receptor substrate 1 signaling via protein tyrosine phosphatase inhibition, increasing glycolysis with suppression of gluconeogenesis by sirtuin modulation, and reducing renal glucose reabsorption via sodium-glucose co-transporter 2. We conclude that biotransformation in the gut is most likely responsible for enhancing therapeutic effects observed for the C-glycosyl parent compounds, including aspalathin, and that these compounds and their derivatives have the potential to regulate multiple factors associated with the development and progression of T2D.

2019 ◽  
Vol 19 (20) ◽  
pp. 1818-1849 ◽  
Author(s):  
Ban Liu ◽  
Yuliang Wang ◽  
Yangyang Zhang ◽  
Biao Yan

: Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. : The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.


2016 ◽  
Vol 18 (3) ◽  
pp. 241-248 ◽  
Author(s):  
J. Mondick ◽  
M. Riggs ◽  
T. Sasaki ◽  
A. Sarashina ◽  
U. C. Broedl ◽  
...  

2012 ◽  
Vol 124 (4) ◽  
pp. 62-73 ◽  
Author(s):  
Serge A. Jabbour ◽  
Jean M. Whaley ◽  
Mark Tirmenstein ◽  
Simon M. Poucher ◽  
Timothy P. Reilly ◽  
...  

2021 ◽  
Author(s):  
Jia Song ◽  
Lingshu Wang ◽  
Xinghong Guo ◽  
Qin He ◽  
Chen Cui ◽  
...  

Abstract Background: Dysregulation of α-cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stem cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α- cell mitochondrial dysfunction remains unclear. Here, we evaluated the efficacy and molecular mechanisms of human umbilical cord MSCs (hucMSCs) on α-cell mitochondrial function and glucagon secretion in T2DM.Methods: hucMSCs were used to treat two kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α-cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by western blotting analysis.Results: In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued islet structure and decreased α- to β-cell ratio. Consistently, glucagon secretion from αTC1-6 cells was inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion.Conclusions: Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α-cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.


2010 ◽  
Vol 69 (2) ◽  
pp. 232-243 ◽  
Author(s):  
Elizabeth Oliver ◽  
Fiona McGillicuddy ◽  
Catherine Phillips ◽  
Sinead Toomey ◽  
Helen M. Roche

The WHO estimate that >1×106deaths in Europe annually can be attributed to diseases related to excess body weight, and with the rising global obesity levels this death rate is set to drastically increase. Obesity plays a central role in the metabolic syndrome, a state of insulin resistance that predisposes patients to the development of CVD and type 2 diabetes mellitus. Obesity is associated with low-grade chronic inflammation characterised by inflamed adipose tissue with increased macrophage infiltration. This inflammation is now widely believed to be the key link between obesity and development of insulin resistance. In recent years it has been established that activation of pro-inflammatory pathways can cross talk with insulin signalling pathways via a number of mechanisms including (a) down-regulation of insulin signalling pathway proteins (e.g. GLUT4 and insulin receptor substrate (IRS)-1), (b) serine phosphorylation of IRS-1 blocking its tyrosine phosphorylation in response to insulin and (c) induction of cytokine signalling molecules that sterically hinder insulin signalling by blocking coupling of the insulin receptor to IRS-1. Long-chain (LC)n-3 PUFA regulate gene expression (a) through transcription factors such as PPAR and NF-κB and (b) via eicosanoid production, reducing pro-inflammatory cytokine production from many different cells including the macrophage. LCn-3 PUFA may therefore offer a useful anti-inflammatory strategy to decrease obesity-induced insulin resistance, which will be examined in the present review.


2001 ◽  
Vol 17 (5) ◽  
pp. 363-373 ◽  
Author(s):  
Giorgio Sesti ◽  
Massimo Federici ◽  
Davide Lauro ◽  
Paolo Sbraccia ◽  
Renato Lauro

Diabetes ◽  
2003 ◽  
Vol 52 (12) ◽  
pp. 3005-3009 ◽  
Author(s):  
P. Kovacs ◽  
R. L. Hanson ◽  
Y.-H. Lee ◽  
X. Yang ◽  
S. Kobes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document