scholarly journals Quantum-Behaved Particle Swarm Optimization with Weighted Mean Personal Best Position and Adaptive Local Attractor

Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Shouwen Chen

Motivated by concepts in quantum mechanics and particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) was proposed as a variant of PSO with better global search ability. In this paper, a QPSO with weighted mean personal best position and adaptive local attractor (ALA-QPSO) is proposed to simultaneously enhance the search performance of QPSO and acquire good global optimal ability. In ALA-QPSO, the weighted mean personal best position is obtained by distinguishing the difference of the effect of the particles with different fitness, and the adaptive local attractor is calculated using the sum of squares of deviations of the particles’ fitness values as the coefficient of the linear combination of the particle best known position and the entire swarm’s best known position. The proposed ALA-QPSO algorithm is tested on twelve benchmark functions, and compared with the basic Artificial Bee Colony and the other four QPSO variants. Experimental results show that ALA-QPSO performs better than those compared method in all of the benchmark functions in terms of better global search capability and faster convergence rate.

Information ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 173 ◽  
Author(s):  
Xiang Yu ◽  
Claudio Estevez

Multiswarm comprehensive learning particle swarm optimization (MSCLPSO) is a multiobjective metaheuristic recently proposed by the authors. MSCLPSO uses multiple swarms of particles and externally stores elitists that are nondominated solutions found so far. MSCLPSO can approximate the true Pareto front in one single run; however, it requires a large number of generations to converge, because each swarm only optimizes the associated objective and does not learn from any search experience outside the swarm. In this paper, we propose an adaptive particle velocity update strategy for MSCLPSO to improve the search efficiency. Based on whether the elitists are indifferent or complex on each dimension, each particle adaptively determines whether to just learn from some particle in the same swarm, or additionally from the difference of some pair of elitists for the velocity update on that dimension, trying to achieve a tradeoff between optimizing the associated objective and exploring diverse regions of the Pareto set. Experimental results on various two-objective and three-objective benchmark optimization problems with different dimensional complexity characteristics demonstrate that the adaptive particle velocity update strategy improves the search performance of MSCLPSO significantly and is able to help MSCLPSO locate the true Pareto front more quickly and obtain better distributed nondominated solutions over the entire Pareto front.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R767-R781 ◽  
Author(s):  
Mattia Aleardi ◽  
Silvio Pierini ◽  
Angelo Sajeva

We have compared the performances of six recently developed global optimization algorithms: imperialist competitive algorithm, firefly algorithm (FA), water cycle algorithm (WCA), whale optimization algorithm (WOA), fireworks algorithm (FWA), and quantum particle swarm optimization (QPSO). These methods have been introduced in the past few years and have found very limited or no applications to geophysical exploration problems thus far. We benchmark the algorithms’ results against the particle swarm optimization (PSO), which is a popular and well-established global search method. In particular, we are interested in assessing the exploration and exploitation capabilities of each method as the dimension of the model space increases. First, we test the different algorithms on two multiminima and two convex analytic objective functions. Then, we compare them using the residual statics corrections and 1D elastic full-waveform inversion, which are highly nonlinear geophysical optimization problems. Our results demonstrate that FA, FWA, and WOA are characterized by optimal exploration capabilities because they outperform the other approaches in the case of optimization problems with multiminima objective functions. Differently, QPSO and PSO have good exploitation capabilities because they easily solve ill-conditioned optimizations characterized by a nearly flat valley in the objective function. QPSO, PSO, and WCA offer a good compromise between exploitation and exploration.


2014 ◽  
Vol 4 (1) ◽  
pp. 48 ◽  
Author(s):  
Abdorrahman Haeri ◽  
Kamran Rezaie ◽  
Seyed Morteza Hatefi

In recent years, integration between companies, suppliers or organizational departments attracted much attention. Decision making about integration encounters with major concerns. One of these concerns is which units should be integrated and what is the effect of integration on performance measures. In this paper the problem of decision making unit (DMU) integration is considered. It is tried to integrate DMUs so that the considered criteria are satisfied. In this research two criteria are considered that are mean of efficiencies of DMUs and the difference between DMUs that have largest and smallest efficiencies. For this purpose multi objective particle swarm optimization (MOPSO) is applied. A case with 17 DMUs is considered. The results show that integration has increased both considered criteria effectively.  Additionally this approach can presents different alternatives for decision maker (DM) that enables DM to select the final decision for integration.


2009 ◽  
Vol 05 (02) ◽  
pp. 487-496 ◽  
Author(s):  
WEI FANG ◽  
JUN SUN ◽  
WENBO XU

Mutation operator is one of the mechanisms of evolutionary algorithms (EAs) and it can provide diversity in the search and help to explore the undiscovered search place. Quantum-behaved particle swarm optimization (QPSO), which is inspired by fundamental theory of PSO algorithm and quantum mechanics, is a novel stochastic searching technique and it may encounter local minima problem when solving multi-modal problems just as that in PSO. A novel mutation mechanism is proposed in this paper to enhance the global search ability of QPSO and a set of different mutation operators is introduced and implemented on the QPSO. Experiments are conducted on several well-known benchmark functions. Experimental results show that QPSO with some of the mutation operators is proven to be statistically significant better than the original QPSO.


Sign in / Sign up

Export Citation Format

Share Document