scholarly journals Resource Allocation Combining Heuristic Matching and Particle Swarm Optimization Approaches: The Case of Downlink Non-Orthogonal Multiple Access

Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 336 ◽  
Author(s):  
Dimitrios Pliatsios ◽  
Panagiotis Sarigiannidis

The ever-increasing requirement of massive connectivity, due to the rapid deployment of internet of things (IoT) devices, in the emerging 5th generation (5G) mobile networks commands for even higher utilization of the available spectrum. Non-orthogonal multiple access (NOMA) is a promising solution that can effectively accommodate a higher number of users, resulting in increased spectrum utilization. In this work, we aim to maximize the total throughput of a NOMA system, while maintaining a good level of fairness among the users. We propose a three-step method where the first step matches the users to the channels using a heuristic matching algorithm, while the second step utilizes the particle swarm optimization algorithm to allocate the power to each channel. In the third step, the power allocated to each channel is further distributed to the multiplexed users based on their respective channel gains. Based on extensive performance simulations, the proposed method offers notable improvement, e.g., 15% in terms of system throughput and 55% in terms of user fairness.

2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5540 ◽  
Author(s):  
Carla E. Garcia ◽  
Mario R. Camana ◽  
Insoo Koo

In this paper, we aim to provide reliable user connectivity and enhanced security for computation task offloading. Physical layer security is studied in a wireless-powered non-orthogonal multiple access (NOMA) mobile edge computing (MEC) system with a nonlinear energy-harvesting (EH) user and a power beacon (PB) in the presence of an eavesdropper. To further provide a friendly environment resource allocation design, wireless power transfer (WPT) is applied. The secure computation efficiency (SCE) problem is solved by jointly optimizing the transmission power, the time allocations for energy transfer, the computation time, and the central processing unit (CPU) frequency in the NOMA-enabled MEC system. The problem is non-convex and challenging to solve because of the complexity of the objective function in meeting constraints that ensure the required quality of service, such as the minimum value of computed bits, limitations on total energy consumed by users, maximum CPU frequency, and minimum harvested energy and computation offloading times. Therefore, in this paper, a low-complexity particle swarm optimization (PSO)-based algorithm is proposed to solve this optimization problem. For comparison purposes, time division multiple access and fully offloading baseline schemes are investigated. Finally, simulation results demonstrate the superiority of the proposed approach over baseline schemes.


Author(s):  
Shuxin Ding ◽  
◽  
Chen Chen ◽  
Jie Chen ◽  
Bin Xin

This paper addresses the issues associated with deployment of sensors, which are critical in wireless sensor networks. This paper provides an improved particle swarm optimization (PSO) algorithm by changing the basic form of PSO and introducing disturbance (d-PSO). By comparing with other PSO-based algorithms, simulation results show that the d-PSO algorithm provides a good-coverage solution with a satisfying coverage rate in a short time. This feature is especially useful for the rapid deployment of sensors.


Sign in / Sign up

Export Citation Format

Share Document