scholarly journals Improving Physical Layer Security of Cooperative NOMA System with Wireless-Powered Full-Duplex Relaying

Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 279
Author(s):  
Yuan Ren ◽  
Yixuan Tan ◽  
Meruyert Makhanbet ◽  
Xuewei Zhang

Non-orthogonal multiple access (NOMA) and wireless energy harvesting are two promising technologies for improving spectral efficiency and energy efficiency, respectively. In this paper, we study the physical layer security of a wireless-powered full-duplex (FD) relay-aided cooperative NOMA system. In particular, the source is wiretapped by an eavesdropper, and the FD relay assists the transmission from the source to a near user and a far user with self-energy recycling. To enhance the security performance of the system, we propose an artificial noise (AN)-aided cooperative transmission scheme, in which the relay emits a jamming signal to confuse the eavesdropper while receiving the signal from the source. For the proposed scheme, the ergodic secrecy sum rate (ESSR) is derived to characterize the secrecy performance and a lower bound of ESSR is obtained. Finally, numerical results verify the accuracy of the theoretical analysis of the proposed AN-aided secure transmission scheme. The superiority of the proposed scheme is also demonstrated since this scheme can achieve better secrecy performance, compared to the conventional cooperative NOMA scheme.

2020 ◽  
Author(s):  
Yong Jin ◽  
Zhentao Hu ◽  
Dongdong Xie ◽  
Guodong Wu ◽  
Lin Zhou

Abstract Physical layer security of non-orthogonal multiple access (NOMA) system which uses simultaneous wireless information and power transfer (SWIPT) technique is deeply dicussed in this paper. Generally, eavesdropper in the downlink of NOMA system may use successive interference cancellation technology (SIC) to obtain the secrecy information of receiver. To tackle this problem, we propose a physical layer security scheme to minimize the transmit power of the base station (BS) while the secrecy rates of receivers are guaranteed. Moreover, semidefinite relaxation (SDR) method and successive convex approximation (SCA) technique are combined to solve above non-convex problem. Simulation results show that in comparison with other methods, our method can effectively reduce the transmit power of the BS.


Author(s):  
Yong Jin ◽  
Zhentao Hu ◽  
Dongdong Xie ◽  
Guodong Wu ◽  
Lin Zhou

AbstractAiming at high energy consumption and information security problem in the simultaneous wireless information and power transfer (SWIPT) multi-user wiretap network, we propose a user-aided cooperative non-orthogonal multiple access (NOMA) physical layer security transmission scheme to minimize base station (BS) transmitted power in this paper. In this scheme, the user near from BS is adopted as a friendly relay to improve performance of user far from BS. An energy harvesting (EH) technology-based SWIPT is employed at the near user to collect energy which can be used at cooperative stage. Since eavesdropper in the downlink of NOMA system may use successive interference cancellation (SIC) technology to obtain the secrecy information of receiver, to tackle this problem, artificial noise (AN) is used at the BS to enhance security performance of secrecy information. Moreover, semidefinite relaxation (SDR) method and successive convex approximation (SCA) technique are combined to solve the above non-convex problem. Simulation results show that in comparison with other methods, our method can effectively reduce the transmitted power of the BS on the constraints of a certain level of the secrecy rates of two users.


2021 ◽  
Author(s):  
Weidong Guo ◽  
Yuxi Liu

Abstract This paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.


Author(s):  
Weidong Guo ◽  
Yuxi Liu

AbstractThis paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.


2019 ◽  
Vol 13 (10) ◽  
pp. 1530-1536
Author(s):  
Rui Ma ◽  
Shizhong Yang ◽  
Min Du ◽  
Haowei Wu ◽  
Jinglan Ou

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Pengfei Hou ◽  
Jianping Gong ◽  
Jumin Zhao

In this paper, we proposed a scheme that Injects artificial noise from the tag end (IANT) to enhance the physical layer security of the ambient backscatter communication (ABC) system. The difference between the ABC system and the traditional radio frequency identification system is whether it uses the radio frequency (RF) signals in the environment to supply energy and modulation information for passive tags. In the IANT scheme, we select the best tag to communicate with the reader according to the channel quality between tags and reader, and at the same time select another tag to generate artificial noise that affects the receiving effect of the eavesdropper. This paper uses the method of generating noise copies in the reader to reduce the interference of artificial noise on the signal received by the reader. The simulation results show that with the increase in channel quality between tags and reader and the increase in the number of tags, the proposed IANT scheme is significantly superior to the contrast scheme in terms of system achievable secrecy rate, effectively enhancing the physical layer security of the ABC system.


Sign in / Sign up

Export Citation Format

Share Document