scholarly journals On the Performance of Physical Layer Security in Virtual Full Duplex Non-Orthogonal Multiple Access System

Author(s):  
Weidong Guo ◽  
Yuxi Liu

Abstract This paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.

Author(s):  
Weidong Guo ◽  
Yuxi Liu

AbstractThis paper investigates physical layer security analysis of cooperative non-orthogonal multiple access (NOMA) communication system. A virtual full-duplex (VFD) relaying scheme with an untrusted amplify-and-forward (AF) half-duplex (HD) relay and a trusted decode-and-forward (DF) HD relay is used in this system to improve the spectral efficiency. In order to prevent the untrusted relay from eavesdropping, a simple and practical cooperative jamming scheme is designed to confuse the untrusted relay. The exact expressions of effective secrecy throughput (EST) for NOMA users and approximate expression of EST for non-NOMA user are derived. All theoretical results are validated by numerical simulations which demonstrate that the proposed VFD-NOMA scheme is superior to existing HD-NOMA scheme in cooperative system and jamming plays an important role for obtaining acceptable EST. In addition, simulation results shows that the best secrecy performance highly depends on the system parameters such as transmit powers and jamming signal power.


2021 ◽  
Author(s):  
Wided Hadj Alouane

Abstract In this paper, we investigate the physical layer security in cooperative non-orthogonal multiple access (NOMA) networks over Nakagamim fading channels. Both amplify-and-forward (AF) and decode-and-forward (DF) protocols are studied. More particularly, closed-form exact and asymptotic expressions for strictly positive secrecy capacity are provided considering NOMA-AF and NOMA-DF relaying systems. Numerical results are presented to justify the accuracy of the obtained theoretical analysis. These results show that NOMA-AF and NOMA-DF relaying networks have a similar secrecy performance.


2020 ◽  
Vol 10 (2) ◽  
pp. 9-17
Author(s):  
Tuan Nhu Nguyen

Abstract— To secure communication from the sender to the receiver in wireless networks, cryptographic algorithms are usually used to encrypt data at the upper layers of a multi-tiered transmission model. Another emerging trend in the security of data transmitted over wireless networks is the physical layer security based on beamforming and interference fading  communication technology and not using cryptographic algorithms. This trend has attracted increasing concerns from both academia and industry. This paper addresses how physical layer security can protect secret data compare with the traditional cryptographic encryption and which is the better cooperative relaying scheme with the state of the art approached methods in wireless relaying beamforming network.Tóm tắt— Việc bảo mật truyền thông vô tuyến từ nơi gửi đến nơi nhận thường sử dụng các thuật toán mật mã để mã hoá dữ liệu tại các tầng phía trên trong mô hình phân lớp. Một xu hướng khác đang được quan tâm rộng rãi là bảo mật tầng vật lý dựa trên kỹ thuật truyền tin beamforming và kỹ thuật tương tác fading kênh chủ động. Xu hướng này hiện đang được thu hút cả trong giới công nghiệp và nghiên cứu. Đóng góp của bài báo này là làm rõ khả năng bảo mật tầng vật lý và so sách chúng với phương pháp bảo mật dùng kỹ thuật mật mã truyền thống. Bài báo cũng so sánh hai kỹ thuật chuyển tiếp được sử dụng chính trong bảo mật tầng vật lý cho mạng vô tuyến chuyển tiếp là Amplify-and-Forward và Decode-and-Forward.


Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 279
Author(s):  
Yuan Ren ◽  
Yixuan Tan ◽  
Meruyert Makhanbet ◽  
Xuewei Zhang

Non-orthogonal multiple access (NOMA) and wireless energy harvesting are two promising technologies for improving spectral efficiency and energy efficiency, respectively. In this paper, we study the physical layer security of a wireless-powered full-duplex (FD) relay-aided cooperative NOMA system. In particular, the source is wiretapped by an eavesdropper, and the FD relay assists the transmission from the source to a near user and a far user with self-energy recycling. To enhance the security performance of the system, we propose an artificial noise (AN)-aided cooperative transmission scheme, in which the relay emits a jamming signal to confuse the eavesdropper while receiving the signal from the source. For the proposed scheme, the ergodic secrecy sum rate (ESSR) is derived to characterize the secrecy performance and a lower bound of ESSR is obtained. Finally, numerical results verify the accuracy of the theoretical analysis of the proposed AN-aided secure transmission scheme. The superiority of the proposed scheme is also demonstrated since this scheme can achieve better secrecy performance, compared to the conventional cooperative NOMA scheme.


Sign in / Sign up

Export Citation Format

Share Document