scholarly journals Reasoning Method between Polynomial Error Assertions

Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 309
Author(s):  
Peng Wu ◽  
Ning Xiong ◽  
Juxia Xiong ◽  
Jinzhao Wu

Error coefficients are ubiquitous in systems. In particular, errors in reasoning verification must be considered regarding safety-critical systems. We present a reasoning method that can be applied to systems described by the polynomial error assertion (PEA). The implication relationship between PEAs can be converted to an inclusion relationship between zero sets of PEAs; the PEAs are then transformed into first-order polynomial logic. Combined with the quantifier elimination method, based on cylindrical algebraic decomposition, the judgment of the inclusion relationship between zero sets of PEAs is transformed into judgment error parameters and specific error coefficient constraints, which can be obtained by the quantifier elimination method. The proposed reasoning method is validated by proving the related theorems. An example of intercepting target objects is provided, and the correctness of our method is tested through large-scale random cases. Compared with reasoning methods without error semantics, our reasoning method has the advantage of being able to deal with error parameters.

i-com ◽  
2016 ◽  
Vol 15 (3) ◽  
Author(s):  
Tilo Mentler ◽  
Christian Reuter ◽  
Stefan Geisler

AbstractMission- and safety-critical domains are more and more characterized by interactive and multimedia systems varying from large-scale technologies (e. g. airplanes) to wearable devices (e. g. smartglasses) operated by professional staff or volunteering laypeople. While technical availability, reliability and security of computer-based systems are of utmost importance, outcomes and performances increasingly depend on sufficient human-machine interaction or even cooperation to a large extent. While this i-com Special Issue on “Human-Machine Interaction and Cooperation in Safety-Critical Systems” presents recent research results from specific application domains like aviation, automotive, crisis management and healthcare, this introductory paper outlines the diversity of users, technologies and interaction or cooperation models involved.


Author(s):  
Rania Salih Ahmed ◽  
Elmustafa Sayed Ali Ahmed ◽  
Rashid A. Saeed

Cyber-physical systems (CPS) have emerged with development of most great applications in the modern world due to their ability to integrate computation, networking, and physical process. CPS and ML applications are widely used in Industry 4.0, military, robotics, and physical security. Development of ML techniques in CPS is strongly linked according to the definition of CPS that states CPS is the mechanism of monitoring and controlling processes using computer-based algorithms. Optimizations adopted with ML in CPS include domain adaptation and fine tuning of current systems, boosting, introducing more safety and robustness by detection and reduction of vulnerabilities, and reducing computation time in time-critical systems. Generally, ML helps CPS to learn and adapt using intelligent models that are generated from training of large-scale data after processing and analysis.


1975 ◽  
Vol 21 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Thomas E Hewitt ◽  
Harry L Pardue

Abstract We have applied a comprehensive theory of photometric errors to the design and evaluation of an inexpensive stabilized photometer. The photometer is described in terms of a group of modules, the characteristics of which are described in terms of their effect on specific error coefficients. Procedures described in this paper show how the principles described earlier [Clin. Chem. 20, 1028 (1974)] can be used to optimize the design of new instrumentation or to evaluate the performance of existing instrumentation. Chemical data are included to verify the agreement between predicted and experimental results


The current requirements of software are intensively based on load sharing, on-demand services, cascading requirements, redundancy for reliability and executing on heterogeneous environments. It needs precise architectural details for development of such software systems. These are large scale software systems with complex interactions amongst the constituent components. Testing for performance and conformance to quality requires perspective modeling fordesigning critical systems. The analysis of these systems is focused on dynamic or execution time behavior for achieving quality. In the same context, this paper redefines Functional Flow Specification for dynamic analysis of critical and collaborating systems. Functional Flow based modeling is a mature concept in the domain of system engineering but is rarely applicable to software systems. Functional Flow Block Reliability Diagram (FFBRD) is a notation for abstract view of the system evolution and interactions. This adopts the specification format of UML and system modeling conventions of SysML specially Enhanced Functional Flow Block Diagram (EFFBD). The flow of data and control are so designed that it best suits the approaches for quality analysis like system reliability. The method proposed is System Reliability with UML or SR-UML for generating test through FFBRD. It also caters to the need of designing software in a familiar formalization for extending, translating and simulating with existing algorithms. From the results collected through various scenarios, we can conclude that SR-UML is instrumental in process improvement of current software development methods


2009 ◽  
Vol 107 (2) ◽  
pp. 500-505 ◽  
Author(s):  
Yunlong Huo ◽  
Ghassan S. Kassab

A hemodynamic analysis is implemented in the entire coronary arterial tree of diastolically arrested, vasodilated pig heart that takes into account vessel compliance and blood viscosity in each vessel of a large-scale simulation involving millions of vessels. The feed hematocrit (Hct) is varied at the inlet of the coronary arterial tree, and the Fahraeus-Lindqvist effect and phase separation are considered throughout the vasculature. The major findings are as follows: 1) vessel compliance is the major determinant of nonlinearity of the pressure-flow relation, and 2) changes in Hct influence wall shear stress (WSS) in epicardial coronary arteries more significantly than in transmural and perfusion arterioles because of the Fahraeus-Lindqvist effect. The present study predicts the flow rate as a second-order polynomial function of inlet pressure due to vessel compliance. WSS in epicardial coronary arteries increases >15% with an increase of feed Hct from 45% to 60% and decreases >15% with a decrease of feed Hct from 45% to 30%, whereas WSS in small arterioles is not affected as feed Hct changes in this range. These findings have important implications for acute Hct changes under vasodilated conditions.


Sign in / Sign up

Export Citation Format

Share Document