scholarly journals Discovering the Arrow of Time in Machine Learning

Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 439
Author(s):  
J. Kasmire ◽  
Anran Zhao

Machine learning (ML) is increasingly useful as data grow in volume and accessibility. ML can perform tasks (e.g., categorisation, decision making, anomaly detection, etc.) through experience and without explicit instruction, even when the data are too vast, complex, highly variable, full of errors to be analysed in other ways. Thus, ML is great for natural language, images, or other complex and messy data available in large and growing volumes. Selecting ML models for tasks depends on many factors as they vary in supervision needed, tolerable error levels, and ability to account for order or temporal context, among many other things. Importantly, ML methods for tasks that use explicitly ordered or time-dependent data struggle with errors or data asymmetry. Most data are (implicitly) ordered or time-dependent, potentially allowing a hidden `arrow of time’ to affect ML performance on non-temporal tasks. This research explores the interaction of ML and implicit order using two ML models to automatically classify (a non-temporal task) tweets (temporal data) under conditions that balance volume and complexity of data. Results show that performance was affected, suggesting that researchers should carefully consider time when matching appropriate ML models to tasks, even when time is only implicitly included.

Author(s):  
J. Kasmire ◽  
Anran Zhao

Machine learning (ML) is increasingly useful as data grows in volume and accessibility as it can perform tasks (e.g. categorisation, decision making, anomaly detection, etc.) through experience and without explicit instruction, even when the data are too vast, complex, highly variable, full of errors to be analysed in other ways , . Thus, ML is great for natural language, images, or other complex and messy data available in large and growing volumes. Selecting a ML algorithm depends on many factors as algorithms vary in supervision needed, tolerable error levels, and ability to account for order or temporal context, among many other things. Importantly, ML methods for explicitly ordered or time-dependent data struggle with errors or data asymmetry. Most data are at least implicitly ordered, potentially allowing a hidden `arrow of time’ to affect non-temporal ML performance. This research explores the interaction of ML and implicit order by training two ML algorithms on Twitter data before performing automatic classification tasks under conditions that balance volume and complexity of data. Results show that performance was affected, suggesting that researchers should carefully consider time when selecting appropriate ML algorithms, even when time is only implicitly included.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
F. Hosseinzadeh Lotfi ◽  
Z. Taeb ◽  
S. Abbasbandy

To evaluate each decision making unit having time dependent inputs and outputs data, a new method has been developed and reported here. This method uses the Malmquist productivity index, and is a very simple function based on Cubic Spline function to determine the progress and regress of that unit. To show the capability of this developed method, the data of 9 branches of a commercial bank has been used, evaluated, and reported.


Information ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 171
Author(s):  
Alexandru Telea ◽  
Andreas Kerren

Recent developments at the crossroads of data science, datamining,machine learning, and graphics and imaging sciences have further established information visualization and visual analytics as central disciplines that deliver methods, techniques, and tools for making sense of and extracting actionable insights and results fromlarge amounts of complex,multidimensional, hybrid, and time-dependent data.[...]


Author(s):  
Sabarmathi K. R. ◽  
Leelavathi R.

Cognitive systems mimic the functions of the human brain and improves decision-making to harness the power of big data in multiple application areas. It generates a model that reacts by sensing, understanding natural language, and providing a response to stimulus naturally rather than traditional programmable systems. Cognitive computing is trained to process large unstructured datasets imposing machine learning techniques to adapt to different context and derive value from big data. Using a custom chat box or search assistant to interact with human in natural language which can understand queries and explains data insights. This chapter also touches on the challenges of cognitive computing to demonstrate insights that are similar to those of humans.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document