scholarly journals DBA_SSD: A Novel End-to-End Object Detection Algorithm Applied to Plant Disease Detection

Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 474
Author(s):  
Jun Wang ◽  
Liya Yu ◽  
Jing Yang ◽  
Hao Dong

In response to the difficulty of plant leaf disease detection and classification, this study proposes a novel plant leaf disease detection method called deep block attention SSD (DBA_SSD) for disease identification and disease degree classification of plant leaves. We propose three plant leaf detection methods, namely, squeeze-and-excitation SSD (Se_SSD), deep block SSD (DB_SSD), and DBA_SSD. Se_SSD fuses SSD feature extraction network and attention mechanism channel, DB_SSD improves VGG feature extraction network, and DBA_SSD fuses the improved VGG network and channel attention mechanism. To reduce the training time and accelerate the training process, the convolutional layers trained in the Image Net image dataset by the VGG model are migrated to this model, whereas the collected plant leaves disease image dataset is randomly divided into training set, validation set, and test set in the ratio of 8:1:1. We chose the PlantVillage dataset after careful consideration because it contains images related to the domain of interest. This dataset consists of images of 14 plants, including images of apples, tomatoes, strawberries, peppers, and potatoes, as well as the leaves of other plants. In addition, data enhancement methods, such as histogram equalization and horizontal flip were used to expand the image data. The performance of the three improved algorithms is compared and analyzed in the same environment and with the classical target detection algorithms YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 tiny. Experiments show that DBA_SSD outperforms the two other improved algorithms, and its performance in comparative analysis is superior to other target detection algorithms.

2021 ◽  
Author(s):  
Jun Wang ◽  
Jing Yang ◽  
Liya Yu ◽  
Hao Dong ◽  
Kun Yun ◽  
...  

Abstract In response to the difficulty of detecting and classifying pests and vegetable and fruit leaves with pests and diseases, this study proposes a novel vegetable and fruit leaf pest detection method called deep block attention SSD (DBA_SSD) for the identification of pests and diseases and classification of the degree of pests and diseases of vegetable and fruit leaves. We propose three vegetable and fruit leaf pest detection methods, namely, squeeze-and excitation SSD (Se_SSD), DB_SSD, and DBA_SSD. Se_SSD fuses SSD feature extraction network and attention mechanism channel, DB_SSD improves VGG feature extraction network, and DBA_SSD fuses the improved VGG network and channel attention mechanism. To reduce the training time and accelerate the training process, the convolutional layers trained in the Image Net image dataset by the VGG model are migrated to this model, whereas the collected vegetable and fruit disease image dataset is randomly divided into training set, validation set, and test set in the ratio of 8:1:1. In addition, data enhancement methods, such as histogram equalization and horizontal flip were used to expand the image data. The performance of the three improved algorithms is compared and analyzed in the same environment and with the classical target detection algorithms YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 tiny. Experiments show that DBA_SSD outperforms the two other improved algorithms, and its performance in comparative analysis is superior to other target detection algorithms.


2021 ◽  
Vol 11 (17) ◽  
pp. 7960
Author(s):  
Chang-Hwan Son

This study proposes a new attention-enhanced YOLO model that incorporates a leaf spot attention mechanism based on regions-of-interest (ROI) feature extraction into the YOLO framework for leaf disease detection. Inspired by a previous study, which revealed that leaf spot attention based on the ROI-aware feature extraction can improve leaf disease recognition accuracy significantly and outperform state-of-the-art deep learning models, this study extends the leaf spot attention model to leaf disease detection. The primary idea is that spot areas indicating leaf diseases appear only in leaves, whereas the background area does not contain useful information regarding leaf diseases. To increase the discriminative power of the feature extractor that is required in the object detection framework, it is essential to extract informative and discriminative features from the spot and leaf areas. To realize this, a new ROI-aware feature extractor, that is, a spot feature extractor was designed. To divide the leaf image into spot, leaf, and background areas, the leaf segmentation module was first pretrained, and then spot feature encoding was applied to encode spot information. Next, the ROI-aware feature extractor was connected to an ROI-aware feature fusion layer to model the leaf spot attention mechanism, and to be joined with the YOLO detection subnetwork. The experimental results confirm that the proposed ROI-aware feature extractor can improve leaf disease detection by boosting the discriminative power of the spot features. In addition, the proposed attention-enhanced YOLO model outperforms conventional state-of-the-art object detection models.


2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document