scholarly journals Object Detection of Road Assets Using Transformer-Based YOLOX with Feature Pyramid Decoder on Thai Highway Panorama

Information ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Teerapong Panboonyuen ◽  
Sittinun Thongbai ◽  
Weerachai Wongweeranimit ◽  
Phisan Santitamnont ◽  
Kittiwan Suphan ◽  
...  

Due to the various sizes of each object, such as kilometer stones, detection is still a challenge, and it directly impacts the accuracy of these object counts. Transformers have demonstrated impressive results in various natural language processing (NLP) and image processing tasks due to long-range modeling dependencies. This paper aims to propose an exceeding you only look once (YOLO) series with two contributions: (i) We propose to employ a pre-training objective to gain the original visual tokens based on the image patches on road asset images. By utilizing pre-training Vision Transformer (ViT) as a backbone, we immediately fine-tune the model weights on downstream tasks by joining task layers upon the pre-trained encoder. (ii) We apply Feature Pyramid Network (FPN) decoder designs to our deep learning network to learn the importance of different input features instead of simply summing up or concatenating, which may cause feature mismatch and performance degradation. Conclusively, our proposed method (Transformer-Based YOLOX with FPN) learns very general representations of objects. It significantly outperforms other state-of-the-art (SOTA) detectors, including YOLOv5S, YOLOv5M, and YOLOv5L. We boosted it to 61.5% AP on the Thailand highway corpus, surpassing the current best practice (YOLOv5L) by 2.56% AP for the test-dev data set.

Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

BACKGROUND Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. OBJECTIVE Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. METHODS We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. RESULTS Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of <i>r</i>=.9010, <i>r</i>=.8967, and <i>r</i>=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. CONCLUSIONS The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.


2021 ◽  
Vol 13 (24) ◽  
pp. 5100
Author(s):  
Teerapong Panboonyuen ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern ◽  
Peerapon Vateekul

Transformers have demonstrated remarkable accomplishments in several natural language processing (NLP) tasks as well as image processing tasks. Herein, we present a deep-learning (DL) model that is capable of improving the semantic segmentation network in two ways. First, utilizing the pre-training Swin Transformer (SwinTF) under Vision Transformer (ViT) as a backbone, the model weights downstream tasks by joining task layers upon the pretrained encoder. Secondly, decoder designs are applied to our DL network with three decoder designs, U-Net, pyramid scene parsing (PSP) network, and feature pyramid network (FPN), to perform pixel-level segmentation. The results are compared with other image labeling state of the art (SOTA) methods, such as global convolutional network (GCN) and ViT. Extensive experiments show that our Swin Transformer (SwinTF) with decoder designs reached a new state of the art on the Thailand Isan Landsat-8 corpus (89.8% F1 score), Thailand North Landsat-8 corpus (63.12% F1 score), and competitive results on ISPRS Vaihingen. Moreover, both our best-proposed methods (SwinTF-PSP and SwinTF-FPN) even outperformed SwinTF with supervised pre-training ViT on the ImageNet-1K in the Thailand, Landsat-8, and ISPRS Vaihingen corpora.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 153-161 ◽  
Author(s):  
T. Carpenter ◽  
A. Lambert ◽  
R. McKenzie

In 1999 and 2000, IWA Task Forces on Water Losses and Performance Indicators published their conclusions of over three years research, analysis and discussions. For the topics of Non-Revenue Water, Water Losses, Apparent Losses and Real Losses, these included:a recommended standard terminology, with definitions and procedures for assessing these components of the Annual Water Balance;recommended performance indicators for each of these components. This work represents a major step forward in defining the “best practice” approach to assessing and presenting components of Non-Revenue Water, for more rational comparisons of performance in diverse systems within a single organisation, within the same country, and between countries. The 21 members of the Water Services Association of Australia (WSAA) provide water and wastewater services to 12.9 million Australians. WSAA seeks to promote “best practice”, and act as a national focus for all interested parties. In February 2000 WSAA organised a national Workshop in Melbourne to discuss the IWA methodology. Arising from this Workshop, WSAA commissioned the production of customised Software and an Associated User Manual known as “Benchloss”, to promote and facilitate the application of the IWA recommended methodology throughout Australia. The paper will describe the development and application of “Benchloss” to date, with a comparison of Australian performance data against an International Data Set used by the Water Losses Task Force.


2020 ◽  
Vol 21 (S23) ◽  
Author(s):  
Jenna Kanerva ◽  
Filip Ginter ◽  
Sampo Pyysalo

Abstract Background:  Syntactic analysis, or parsing, is a key task in natural language processing and a required component for many text mining approaches. In recent years, Universal Dependencies (UD) has emerged as the leading formalism for dependency parsing. While a number of recent tasks centering on UD have substantially advanced the state of the art in multilingual parsing, there has been only little study of parsing texts from specialized domains such as biomedicine. Methods:  We explore the application of state-of-the-art neural dependency parsing methods to biomedical text using the recently introduced CRAFT-SA shared task dataset. The CRAFT-SA task broadly follows the UD representation and recent UD task conventions, allowing us to fine-tune the UD-compatible Turku Neural Parser and UDify neural parsers to the task. We further evaluate the effect of transfer learning using a broad selection of BERT models, including several models pre-trained specifically for biomedical text processing. Results:  We find that recently introduced neural parsing technology is capable of generating highly accurate analyses of biomedical text, substantially improving on the best performance reported in the original CRAFT-SA shared task. We also find that initialization using a deep transfer learning model pre-trained on in-domain texts is key to maximizing the performance of the parsing methods.


10.2196/17643 ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. e17643
Author(s):  
Erniu Wang ◽  
Fan Wang ◽  
Zhihao Yang ◽  
Lei Wang ◽  
Yin Zhang ◽  
...  

Background Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts. Objective To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction. Methods Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences. Results We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (P<.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature. Conclusions Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.


Author(s):  
Salah Ahmed

Recently, there have been tremendous research outcomes in the fields of speech recognition and natural language processing. This is  due to the well-developed multilayers deep learning paradigms such as wav2vec2.0, Wav2vecU, WavBERT, and HuBERT that provide better representation learning and high information capturing.  Such paradigms run on hundreds of unlabeled data, then fine-tuned on a small dataset for specific tasks. This paper introduces a deep learning constructed emotional recognition model for Arabic speech dialogues. The developed model employs the state of the art audio representations include wav2vec2.0 and HuBERT. The experiment and performance outcomes of our model overcome the previous known results.


10.2196/23375 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e23375 ◽  
Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

Background Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. Objective Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. Methods We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. Results Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. Conclusions The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.


2020 ◽  
Vol 27 (10) ◽  
pp. 1529-1537 ◽  
Author(s):  
Sam Henry ◽  
Yanshan Wang ◽  
Feichen Shen ◽  
Ozlem Uzuner

Abstract Objective The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task track 3, focused on medical concept normalization (MCN) in clinical records. This track aimed to assess the state of the art in identifying and matching salient medical concepts to a controlled vocabulary. In this paper, we describe the task, describe the data set used, compare the participating systems, present results, identify the strengths and limitations of the current state of the art, and identify directions for future research. Materials and Methods Participating teams were provided with narrative discharge summaries in which text spans corresponding to medical concepts were identified. This paper refers to these text spans as mentions. Teams were tasked with normalizing these mentions to concepts, represented by concept unique identifiers, within the Unified Medical Language System. Submitted systems represented 4 broad categories of approaches: cascading dictionary matching, cosine distance, deep learning, and retrieve-and-rank systems. Disambiguation modules were common across all approaches. Results A total of 33 teams participated in the MCN task. The best-performing team achieved an accuracy of 0.8526. The median and mean performances among all teams were 0.7733 and 0.7426, respectively. Conclusions Overall performance among the top 10 teams was high. However, several mention types were challenging for all teams. These included mentions requiring disambiguation of misspelled words, acronyms, abbreviations, and mentions with more than 1 possible semantic type. Also challenging were complex mentions of long, multi-word terms that may require new ways of extracting and representing mention meaning, the use of domain knowledge, parse trees, or hand-crafted rules.


Author(s):  
Nisrine Ait Khayi ◽  
Vasile Rus ◽  
Lasang Tamang

The transfer learning pretraining-finetuning  paradigm has revolutionized the natural language processing field yielding state-of the art results in  several subfields such as text classification and question answering. However, little work has been done investigating pretrained language models for the  open student answer assessment task. In this paper, we fine tune pretrained T5, BERT, RoBERTa, DistilBERT, ALBERT and XLNet models on the DT-Grade dataset which contains freely generated (or open) student answers together with judgment of their correctness. The experimental results demonstrated the effectiveness of these models based on the transfer learning pretraining-finetuning paradigm for open student answer assessment. An improvement of 8%-15% in accuracy was obtained over previous methods. Particularly, a T5 based method led to state-of-the-art results with an accuracy and F1 score of 0.88.


2019 ◽  
Author(s):  
Erniu Wang ◽  
Fan Wang ◽  
Zhihao Yang ◽  
Lei Wang ◽  
Yin Zhang ◽  
...  

BACKGROUND Extracting the interactions between chemicals and proteins from the biomedical literature is important for many biomedical tasks such as drug discovery, medicine precision, and knowledge graph construction. Several computational methods have been proposed for automatic chemical-protein interaction (CPI) extraction. However, the majority of these proposed models cannot effectively learn semantic and syntactic information from complex sentences in biomedical texts. OBJECTIVE To relieve this problem, we propose a method to effectively encode syntactic information from long text for CPI extraction. METHODS Since syntactic information can be captured from dependency graphs, graph convolutional networks (GCNs) have recently drawn increasing attention in natural language processing. To investigate the performance of a GCN on CPI extraction, this paper proposes a novel GCN-based model. The model can effectively capture sequential information and long-range syntactic relations between words by using the dependency structure of input sentences. RESULTS We evaluated our model on the ChemProt corpus released by BioCreative VI; it achieved an F-score of 65.17%, which is 1.07% higher than that of the state-of-the-art system proposed by Peng et al. As indicated by the significance test (<i>P</i>&lt;.001), the improvement is significant. It indicates that our model is effective in extracting CPIs. The GCN-based model can better capture the semantic and syntactic information of the sentence compared to other models, therefore alleviating the problems associated with the complexity of biomedical literature. CONCLUSIONS Our model can obtain more information from the dependency graph than previously proposed models. Experimental results suggest that it is competitive to state-of-the-art methods and significantly outperforms other methods on the ChemProt corpus, which is the benchmark data set for CPI extraction.


Sign in / Sign up

Export Citation Format

Share Document