scholarly journals Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold

Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Béatrice Golinelli-Pimpaneau

AlphaFold and RoseTTAFold are deep learning-based approaches that predict the structure of proteins from their amino acid sequences. Remarkable success has recently been achieved in the prediction accuracy of not only the fold of the target protein but also the position of its amino acid side chains. In this article, I question the accuracy of these methods to predict iron–sulfur binding sites. I analyze three-dimensional models calculated by AlphaFold and RoseTTAFold of Fe–S–dependent enzymes, for which no structure of a homologous protein has been solved experimentally. In all cases, the amino acids that presumably coordinate the cluster were gathered together and facing each other, which led to a quite accurate model of the Fe–S cluster binding site. Yet, cysteine candidates were often involved in intramolecular disulfide bonds, and the number and identity of the protein amino acids that should ligate the cluster were not always clear. The experimental structure determination of the protein with its Fe–S cluster and in complex with substrate/inhibitor/product is still needed to unambiguously visualize the coordination state of the cluster and understand the conformational changes occurring during catalysis.

1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


2019 ◽  
Vol 4 (4) ◽  
pp. 761-768 ◽  
Author(s):  
Dimitri Schritt ◽  
Songling Li ◽  
John Rozewicki ◽  
Kazutaka Katoh ◽  
Kazuo Yamashita ◽  
...  

Repertoire Builder (https://sysimm.org/rep_builder/) is a method for generating atomic-resolution, three-dimensional models of B cell receptors (BCRs) or T cell receptors (TCRs) from their amino acid sequences.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Raigul Niyazova ◽  
Olga Berillo ◽  
Shara Atambayeva ◽  
Anna Pyrkova ◽  
Aigul Alybayeva ◽  
...  

We searched for 2,563 microRNA (miRNA) binding sites in 17,494 mRNA sequences of human genes. miR-1322 has more than 2,000 binding sites in 1,058 genes withΔG/ΔGmratio of 85% and more. miR-1322 has 1,889 binding sites in CDSs, 215 binding sites in 5′ UTRs, and 160 binding sites in 3′ UTRs. From two to 28 binding sites have arranged localization with the start position through three nucleotides of each following binding site. The nucleotide sequences of these sites in CDSs encode oligopeptides with the same and/or different amino acid sequences. We found that 33% of the target genes encoded transcription factors. miR-1322 has arranged binding sites in the CDSs of orthologousMAMLD1,MAML2, andMAML3genes. These sites encode a polyglutamine oligopeptide ranging from six to 47 amino acids in length. The properties of miR-1322 binding sites in orthologous and paralogous target genes are discussed.


Author(s):  
Rajneesh - ◽  
Soumila Mondal ◽  
Jainendra Pathak ◽  
Prashant R. Singh ◽  
Shailendra P. Singh ◽  
...  

Photolyases (Phrs) are enzymes that utilize blue/ultraviolet (UV-A) region of light for repairing UV-induced cyclopyramidine dimer. We have studied Phr groups by bioinformatic analyses as well as active-site and structural modeling. The analysis of 238 amino acid sequences from 85 completely sequenced cyanobacterial genomes revealed five classes of Phrs, i.e., CPD Gr I, 6-4 Phrs/cryptochrome, Cry-DASH, Fe-S bacteria Phrs, and a group having fewer number of amino acids (276-385) in length. Distribution of Phr groups in cyanobacteria belonging to the order Synechococcales was found to be influenced by the habitats of the organisms. Class V Phrs were exclusively present in cyanobacteria. Unique motif and binding sites were reported in Group II and III. Fe-S protein binding site was only present in Group V. Active site residues and putative CPD/6-4pp binding residues are charged amino acids which were present on the surface of the proteins. Majority of hydrophilic amino acid residues were present on surface of Phrs. Sequence analysis confirmed the diverse nature of Phrs, though, sequence diversity does not affect their overall 3D structure. Protein-ligand interaction analysis identified novel CPD/6-4PP binding sites on Phrs. This structural information of Phrs can be used for the preparation of efficient Phr based formulations.


1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


Sign in / Sign up

Export Citation Format

Share Document