scholarly journals A Strain of Bacillus thuringiensis Containing a Novel cry7Aa2 Gene that Is Toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)

Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 259 ◽  
Author(s):  
Mikel Domínguez-Arrizabalaga ◽  
Maite Villanueva ◽  
Ana Beatriz Fernandez ◽  
Primitivo Caballero

The genome of the Bacillus thuringiensis BM311.1 strain was sequenced and assembled in 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative cry gene from this strain was identified as a potential novel Cry protein of 1138 amino acid residues with a 98% identity compared to Cry7Aa1 and a predicted molecular mass of 129.4 kDa. The primary structure of Cry7Aa2, which had eight conserved blocks and the classical structure of three domains, differed in 28 amino acid residues from that of Cry7Aa1. The cry7Aa2 gene was amplified by PCR and then expressed in the acrystalliferous strain BMB171. SDS-PAGE analysis confirmed the predicted molecular mass for the Cry7Aa2 protein and revealed that after in vitro trypsin incubation, the protein was degraded to a toxin of 62 kDa. However, when treated with digestive fluids from Leptinotarsa decemlineata larvae, one major proteinase-resistant fragment of slightly smaller size was produced. The spore and crystal mixture produced by the wild-type BM311.1 strain against L. decemlineata neonate larvae resulted in a LC50 value of 18.8 μg/mL, which was statistically similar to the estimated LC50 of 20.8 μg/mL for the recombinant BMB17-Cry7Aa2 strain. In addition, when this novel toxin was activated in vitro with commercial trypsin, the LC50 value was reduced 3.8-fold to LC50 = 4.9 μg/mL. The potential advantages of Cry7Aa2 protoxin compared to Cry7Aa1 protoxin when used in the control of insect pests are discussed.

Author(s):  
Mikel Dominguez- ◽  
Maite Villanueva ◽  
Ana Beatriz Fernandez ◽  
Primitivo Caballero

The genome of the Bacillus thuringiensis BM311.1 strain was sequenced and assembled in 359 contigs containing a total of 6,390,221 bp. The plasmidic ORF of a putative cry gene from this strain was identified as a potential novel Cry protein of 1138 amino acid residues with a 98% identity respect to Cry7Aa1 protein and a predicted molecular mass of 129.4 kDa. The primary structure of this Cry7Aa2 protein, which revealed the presence of eight conserved blocks and the classical structure of three domains, differed in 28 amino acid residues from that of Cry7Aa1. The cry7Aa2 gene was amplified by PCR and then expressed in the acrystalliferous strain BMB171. SDS-PAGE analysis confirmed the predicted molecular mass for the Cry7Aa2 protein and revealed that, after in vitro trypsin incubation, it was degraded to a toxin of 62 kDa. However, when treated with digestive fluids from Leptinotarsa decemlineata larvae two proteinase-resistant fragments of 60 and 65 kDa were produced. Spore and crystal mixture produced by the wild-type BM311.1 strain against L. decemlineata neonate larvae resulted in a LC50 (18.8 μg/ml), which was statistically equal to the estimated LC50 (20.8 μg/mL) for the recombinant BMB17-Cry7Aa2 strain. In addition, when this novel toxin was activated in vitro with commercial trypsin, the LC50 value was reduced 4 times approximately (LC50 = 4.9 μg/mL). The advantages of Cry7Aa2 protoxin compared to Cry7Aa1 protoxin when used in the control of insect pests are discussed.


2011 ◽  
Vol 77 (10) ◽  
pp. 3227-3233 ◽  
Author(s):  
Yan Wu ◽  
Cheng-Feng Lei ◽  
Dan Yi ◽  
Peng-Ming Liu ◽  
Mei-Ying Gao

ABSTRACTA novel δ-endotoxin gene was cloned from aBacillus thuringiensisstrain with activity againstLocusta migratoria manilensisby PCR-based genome walking. The sequence of thecrygene was 3,432 bp long, and it encoded a Cry protein of 1,144 amino acid residues with a molecular mass of 129,196.5 kDa, which exhibited 62% homology with Cry7Ba1 in the amino acid sequence. The δ-endotoxin with five conserved sequence blocks in the amino-terminal region was designated Cry7Ca1 (GenBank accession no.EF486523). Protein structure analysis suggested that the activated toxin of Cry7Ca1 has three domains: 227 residues forming 7 α-helices (domain I); 213 residues forming three antiparallel β-sheets (domain II); and 134 residues forming a β-sandwich (domain III). The three domains, respectively, exhibited 47, 44, and 34% sequence identity with corresponding domains of known Cry toxins. SDS-PAGE and Western blot analysis showed that Cry7Ca1, encoded by the full-length open reading frame of thecrygene, the activated toxin 1, which included three domains but without the N-terminal 54 amino acid residues and the C terminus, and the activated toxin 2, which included three domains and N-terminal 54 amino acid residues but without the C terminus, could be expressed inEscherichia coli. Bioassay results indicated that the expressed proteins of Cry7Ca1 and the activated toxins (toxins 1 and 2) showed significant activity against 2nd instar locusts, and after 7 days of infection, the estimated 50% lethal concentrations (LC50s) were 8.98 μg/ml for the expressed Cry7Ca1, 0.87 μg/ml for the activated toxin 1, and 4.43 μg/ml for the activated toxin 2. The δ-endotoxin also induced histopathological changes in midgut epithelial cells of adultL. migratoria manilensis.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


Biologia ◽  
2007 ◽  
Vol 62 (4) ◽  
Author(s):  
Reda Sammour

AbstractThe main goal of this work was to make the cDNA-encoding subunit G2 of soybean glycinin, capable of self-assembly in vitro and rich in methionine residues. Two mutants (pSP65/G4SacG2 and pSP65/G4SacG2HG4) were therefore constructed. The constructed mutants were successfully assembled in vitro into oligomers similar to those occurred in the seed. The successful self-assembly was due to the introduction of Sac fragment of Gy4 (the codons of the first 21 amino acid residues), which reported to be the key element in self-assembly into trimers. The mutant pSP65/G4SacG2HG4 included the acidic chain of Gy4 (HG4), which was previously molecularly modified to have three methionine residues. This mutant will be useful in the efforts to improve the seed quality.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4147
Author(s):  
Neha Gupta ◽  
Saurav Kumar Choudhary ◽  
Neeta Bhagat ◽  
Muthusamy Karthikeyan ◽  
Archana Chaturvedi

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.


2001 ◽  
Vol 355 (3) ◽  
pp. 663-670 ◽  
Author(s):  
Claudia TROST ◽  
Christiane BERGS ◽  
Nina HIMMERKUS ◽  
Veit FLOCKERZI

The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca2+-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca2+-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1) retention of in vitro translated TRP4 and of TRP4 protein solubilized from bovine adrenal cortex by CaM–Sepharose in the presence of Ca2+, and (2) TRP4–glutathione S-transferase pull-down experiments. Two domains of TRP4, amino acid residues 688–759 and 786–848, were identified as being able to interact with CaM. The binding of CaM to both domains occurred only in the presence of Ca2+ concentrations above 10µM, with half maximal binding occurring at 16.6µM (domain 1) and 27.9µM Ca2+ (domain 2). Synthetic peptides, encompassing the two putative CaM binding sites within these domains and covering amino acid residues 694–728 and 829–853, interacted directly with dansyl–CaM with apparent Kd values of 94–189nM. These results indicate that TRP4/Ca2+-CaM are parts of a signalling complex involved in agonist-induced Ca2+ entry.


1998 ◽  
Vol 141 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Julie Haskins ◽  
Lijie Gu ◽  
Erika S. Wittchen ◽  
Jennifer Hibbard ◽  
Bruce R. Stevenson

A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19–amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of ∼130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.


Sign in / Sign up

Export Citation Format

Share Document