scholarly journals Three-Dimensional Culture of Rhipicephalus (Boophilus) microplus BmVIII-SCC Cells on Multiple Synthetic Scaffold Systems and in Rotating Bioreactors

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 747
Author(s):  
Michael T. Suderman ◽  
Kevin B. Temeyer ◽  
Kristie G. Schlechte ◽  
Adalberto A. Pérez de León

Tick cell culture facilitates research on the biology of ticks and their role as vectors of pathogens that affect humans, domestic animals, and wildlife. Because two-dimensional cell culture doesn’t promote the development of multicellular tissue-like composites, we hypothesized that culturing tick cells in a three-dimensional (3-D) configuration would form spheroids or tissue-like organoids. In this study, the cell line BmVIII-SCC obtained from the cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini, 1888), was cultured in different synthetic scaffold systems. Growth of the tick cells on macrogelatinous beads in rotating continuous culture system bioreactors enabled cellular attachment, organization, and development into spheroid-like aggregates, with evidence of tight cellular junctions between adjacent cells and secretion of an extracellular matrix. At least three cell morphologies were identified within the aggregates: fibroblast-like cells, small endothelial-like cells, and larger cells exhibiting multiple cytoplasmic endosomes and granular vesicles. These observations suggest that BmVIII-SCC cells adapted to 3-D culture retain pluripotency. Additional studies involving genomic analyses are needed to determine if BmVIII-SCC cells in 3-D culture mimic tick organs. Applications of 3-D culture to cattle fever tick research are discussed.

Author(s):  
Terry Riss ◽  
O. Joseph Trask

AbstractAlong with the increased use of more physiologically relevant three-dimensional cell culture models comes the responsibility of researchers to validate new assay methods that measure events in structures that are physically larger and more complex compared to monolayers of cells. It should not be assumed that assays designed using monolayers of cells will work for cells cultured as larger three-dimensional masses. The size and barriers for penetration of molecules through the layers of cells result in a different microenvironment for the cells in the outer layer compared to the center of three-dimensional structures. Diffusion rates for nutrients and oxygen may limit metabolic activity which is often measured as a marker for cell viability. For assays that lyse cells, the penetration of reagents to achieve uniform cell lysis must be considered. For live cell fluorescent imaging assays, the diffusion of fluorescent probes and penetration of photons of light for probe excitation and fluorescent emission must be considered. This review will provide an overview of factors to consider when implementing assays to interrogate three dimensional cell culture models.


2014 ◽  
Vol 2 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Lin Jin ◽  
Zhang-Qi Feng ◽  
Ting Wang ◽  
Zhuozhuo Ren ◽  
Shuangshuang Ma ◽  
...  

2000 ◽  
Author(s):  
Masato Sato ◽  
Miya Ishihara ◽  
Tsunenori Arai ◽  
Takashi Asazuma ◽  
Toshiyuki Kikuchi ◽  
...  

2007 ◽  
Vol 330-332 ◽  
pp. 1177-1180 ◽  
Author(s):  
Kanji Tsuru ◽  
Satoshi Hayakawa ◽  
Yuki Shirosaki ◽  
T. Okayama ◽  
K. Kataoka ◽  
...  

Porous & rubbery organic-inorganic hybrids were synthesized from tetraethoxysilane (TEOS) and polydimethylsiloxane (PDMS) through a sol-gel route using sieved sucrose granules as a porogen. The porous hybrids with a high content of PDMS behaved like polymer sponge. The porosity was over 90% irrespective of the hybrid composition and the pore diameter ranged from 100 to 500 μm. In the three-dimensional cell culture, mammalian cells were well cultured in the porous hybrids. The present results indicate that the hybrids may be a promising scaffold for developing such functional culture methods.


1999 ◽  
Author(s):  
Yow-Min D. Tsao ◽  
Steve R. Gonda

Abstract The Hydrodynamic Focusing Bioreactor (HDFB) developed by NASA at the Johnson Space Center provides a unique hydrofocusing capability that simultaneously enables a low-shear culture environment and a unique hydrofocusing-based “herding” of suspended cells, cell aggregates, and air bubbles. The HDFB is a rotating dome-shaped cell culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can rotate at different speeds and in either the same or different directions. Adjusting the differential rotation rate between the vessel and spinner results in a controllable hydrodynamic focusing force. The resultant hydrodynamic force suspends the cells in a low-shear fluid environment that supports the formation of delicate three-dimensional tissue assemblies. Both suspension and anchorage-dependent cells have been successfully cultured.


2018 ◽  
Vol 35 (1) ◽  
pp. e2733 ◽  
Author(s):  
Kristin Robin Ko ◽  
Meng-Chiao Tsai ◽  
John P. Frampton

Sign in / Sign up

Export Citation Format

Share Document