Anomaly Detection and Classification in Predictive Maintenance Tasks with Zero Initial Training

IoT ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 590-609
Author(s):  
Filippo Morselli ◽  
Luca Bedogni ◽  
Umberto Mirani ◽  
Michele Fantoni ◽  
Simone Galasso

The Fourth Industrial Revolution has led to the adoption of novel technologies and methodologies in factories, making these more efficient and productive. Among the new services which are changing industry, there are those based on machine learning algorithms, which enable machines to learn from their past observations and hence possibly forecast future states. Specifically, predictive maintenance represents the opportunity to understand in advance possible machine outages due to broken parts and schedule the necessary maintenance operations. However, in real scenarios predictive maintenance struggles to be adopted due to a multitude of variables and the heavy customization it requires. In this work, we propose a novel framework for predictive maintenance, which is trained online to recognize new issues reported by the operators. Our framework, tested on different scenarios and with a varying number and several kinds of sensors, shows recall levels above 0.85, demonstrating its effectiveness and adaptability.

Author(s):  
Hilal Arslan ◽  
Fatma Bozyigit

Moving into the fourth industrial revolution and the rapid digital transformation, there is a huge volume of data to be managed in each industry. Industrial simulations commonly produce data including the inputs and outputs of linear systems with several million unknowns. Solving linear systems is one of the fundamental problems in scientific computing, and it requires significant system resources. Determining a suitable method to solve linear systems can be a challenging task, since there is not a certain knowledge about which method is the most suitable for different numerical problems. In this study, the authors demonstrate how machine learning (ML) approach can be used in selecting solvers for linear systems. The chapter includes frequently used ML methods from literature and explain the usage of them to select optimal solvers and preconditioners.


Author(s):  
Jakub Gęca

The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hasan Alkahtani ◽  
Theyazn H. H. Aldhyani ◽  
Mohammed Al-Yaari

Telecommunication has registered strong and rapid growth in the past decade. Accordingly, the monitoring of computers and networks is too complicated for network administrators. Hence, network security represents one of the biggest serious challenges that can be faced by network security communities. Taking into consideration the fact that e-banking, e-commerce, and business data will be shared on the computer network, these data may face a threat from intrusion. The purpose of this research is to propose a methodology that will lead to a high level and sustainable protection against cyberattacks. In particular, an adaptive anomaly detection framework model was developed using deep and machine learning algorithms to manage automatically-configured application-level firewalls. The standard network datasets were used to evaluate the proposed model which is designed for improving the cybersecurity system. The deep learning based on Long-Short Term Memory Recurrent Neural Network (LSTM-RNN) and machine learning algorithms namely Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) algorithms were implemented to classify the Denial-of-Service attack (DoS) and Distributed Denial-of-Service (DDoS) attacks. The information gain method was applied to select the relevant features from the network dataset. These network features were significant to improve the classification algorithm. The system was used to classify DoS and DDoS attacks in four stand datasets namely KDD cup 199, NSL-KDD, ISCX, and ICI-ID2017. The empirical results indicate that the deep learning based on the LSTM-RNN algorithm has obtained the highest accuracy. The proposed system based on the LSTM-RNN algorithm produced the highest testing accuracy rate of 99.51% and 99.91% with respect to KDD Cup’99, NSL-KDD, ISCX, and ICI-Id2017 datasets, respectively. A comparative result analysis between the machine learning algorithms, namely SVM and KNN, and the deep learning algorithms based on the LSTM-RNN model is presented. Finally, it is concluded that the LSTM-RNN model is efficient and effective to improve the cybersecurity system for detecting anomaly-based cybersecurity.


Sign in / Sign up

Export Citation Format

Share Document