scholarly journals Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury

2021 ◽  
Vol 10 (21) ◽  
pp. 4898
Author(s):  
Jonathan S. Calvert ◽  
Megan L. Gill ◽  
Margaux B. Linde ◽  
Daniel D. Veith ◽  
Andrew R. Thoreson ◽  
...  

Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.

Spinal Cord ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 565-570 ◽  
Author(s):  
P K Shah ◽  
C M Gregory ◽  
J E Stevens ◽  
N C Pathare ◽  
A Jayaraman ◽  
...  

2006 ◽  
Vol 87 (6) ◽  
pp. 772-778 ◽  
Author(s):  
Prithvi K. Shah ◽  
Jennifer E. Stevens ◽  
Chris M. Gregory ◽  
Neeti C. Pathare ◽  
Arun Jayaraman ◽  
...  

2021 ◽  
pp. 101137
Author(s):  
Alexis Gutierrez ◽  
Rachel Blue ◽  
Patricia Zadnik-Sullivan ◽  
Blair Ashley ◽  
Samir Mehta ◽  
...  

2006 ◽  
Vol 29 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Lee Stoner ◽  
Manning Sabatier ◽  
Leslie VanhHiel ◽  
Danielle Groves ◽  
David Ripley ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
Author(s):  
Thomas C. Bulea ◽  
Ronald J. Triolo

A walker capable of providing vertical lift support can improve independence and increase mobility of individuals living with spinal cord injury (SCI). Using a novel lifting mechanism, a walker has been designed to provide sit-to-stand assistance to individuals with partially paralyzed lower extremity muscles. The design was verified through experiments with one individual with SCI. The results show the walker is capable of reducing the force demands on the upper and lower extremity muscles during sit-to-stand transition compared to standard walkers. The walker does not require electrical power and no grip force or harness is necessary during sit-to-stand operation, enabling its use by individuals with limited hand function. The design concept can be extended to aid other populations with lower extremity weakness.


Sign in / Sign up

Export Citation Format

Share Document