scholarly journals Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids

2020 ◽  
Vol 9 (5) ◽  
pp. 1596 ◽  
Author(s):  
Friederike Zimmermann ◽  
Johann Roessler ◽  
David Schmidt ◽  
Andrzej Jasina ◽  
Paul Schumann ◽  
...  

Background and Aims: The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. Methods: Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. Results: HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. Conclusions: Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment.

2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Jinchi Jiang ◽  
Ninghan Feng ◽  
Chengcheng Zhang ◽  
Fengping Liu ◽  
Jianxin Zhao ◽  
...  

ABSTRACT While there is strong evidence showing that many food-borne probiotics regulate cholesterol metabolism, few studies have examined how probiotics of human origin affect cholesterol metabolism. Because people living in so-called ‘longevity villages’ are unlikely to have hypercholesterolemia, we hypothesized that probiotics isolated from the residents would have cholesterol-reducing effects on rats with hypercholesterolemia. We isolated 16 strains of Lactobacillus from four longevity populations in China. The strains were tested in vitro for bile salt hydrolase (BSH) activity and two isolates, Lactobacillus reuteri A9 and Lactobacillus mucosae A13, were screened out. These two strains were then administered daily for 28 d to rats fed a cholesterol-rich diet. The serum total cholesterol levels in the L. reuteri A9 and L. mucosae A13 groups decreased by 24.3% and 21.6%, respectively. The serum low density lipoprotein cholesterol levels decreased by 23.8% and 25.2%, respectively. The L. reuteri A9 and L. mucosae A13 groups also exhibited upregulated hepatic mRNA expression of Sterol regulatory element-binding protein 2 (Srebp2) by 2.71-fold and 2.54-fold, respectively. The mRNA expression levels of hepatic low-density lipoprotein receptor (Ldlr) in the two groups were significantly up-regulated by 1.28-fold and 2.17-fold, respectively. The composition of gut microbiota was recovered by oral gavage in both experimental groups, and the destroyed diversity of gut microbiota was relieved.


2016 ◽  
Vol 116 (09) ◽  
pp. 565-577 ◽  
Author(s):  
Gemma Brufau ◽  
Marion J. J. Gijbels ◽  
Ine M. J. Wolfs ◽  
Saskia van der Velden ◽  
Chantal C. H. Pöttgens ◽  
...  

SummaryInflammatory responses and cholesterol homeostasis are interconnected in atherogenesis. Interleukin (IL)-10 is an important anti-inflammatory cytokine, known to suppress atherosclerosis development. However, the specific cell types responsible for the atheroprotective effects of IL-10 remain to be defined and knowledge on the actions of IL-10 in cholesterol homeostasis is scarce. Here we investigated the functional involvement of myeloid IL-10-mediated atheroprotection. To do so, bone marrow from IL-10 receptor 1 (IL-10R1) wild-type and myeloid IL-10R1-deficient mice was transplanted to lethally irradiated female LDLR-/- mice. Hereafter, mice were given a high cholesterol diet for 10 weeks after which atherosclerosis development and cholesterol metabolism were investigated. In vitro, myeloid IL-10R1 deficiency resulted in a pro-inflammatory macrophage phenotype. However, in vivo significantly reduced lesion size and severity was observed. This phenotype was associated with lower myeloid cell accumulation and more apoptosis in the lesions. Additionally, a profound reduction in plasma and liver cholesterol was observed upon myeloid IL-10R1 deficiency, which was reflected in plaque lipid content. This decreased hypercholesterolaemia was associated with lowered very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) levels, likely as a response to decreased intestinal cholesterol absorption. In addition, IL-10R1 deficient mice demonstrated substantially higher faecal sterol loss caused by increased non-biliary cholesterol efflux. The induction of this process was linked to impaired ACAT2-mediated esterification of liver and plasma cholesterol. Overall, myeloid cells do not contribute to IL-10-mediated atheroprotection. In addition, this study demonstrates a novel connection between IL-10-mediated inflammation and cholesterol homeostasis in atherosclerosis. These findings make us reconsider IL-10 as a beneficial influence on atherosclerosis.Supplementary Material to this article is available online at www.thrombosis-online.com.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Dianaly T. Au ◽  
Mary Migliorini ◽  
Dudley K. Strickland ◽  
Selen C. Muratoglu

Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1−/−) generated on a low-density lipoprotein receptor knockout (LDLR−/−) background and fed a Western diet. LDLR−/−; macLRP1−/− mice gained less body weight and had improved glucose tolerance compared to LDLR−/− mice. Livers from LDLR−/−; macLRP1−/− mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR−/−; macLRP1−/− mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.


Life Sciences ◽  
2002 ◽  
Vol 70 (20) ◽  
pp. 2355-2366 ◽  
Author(s):  
Shigeru Murakami ◽  
Yukiko Kondo ◽  
Yoshihisa Toda ◽  
Hideaki Kitajima ◽  
Kazuya Kameo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document