scholarly journals Towards Generating and Evaluating Iconographic Image Captions of Artworks

2021 ◽  
Vol 7 (8) ◽  
pp. 123
Author(s):  
Eva Cetinic

To automatically generate accurate and meaningful textual descriptions of images is an ongoing research challenge. Recently, a lot of progress has been made by adopting multimodal deep learning approaches for integrating vision and language. However, the task of developing image captioning models is most commonly addressed using datasets of natural images, while not many contributions have been made in the domain of artwork images. One of the main reasons for that is the lack of large-scale art datasets of adequate image-text pairs. Another reason is the fact that generating accurate descriptions of artwork images is particularly challenging because descriptions of artworks are more complex and can include multiple levels of interpretation. It is therefore also especially difficult to effectively evaluate generated captions of artwork images. The aim of this work is to address some of those challenges by utilizing a large-scale dataset of artwork images annotated with concepts from the Iconclass classification system. Using this dataset, a captioning model is developed by fine-tuning a transformer-based vision-language pretrained model. Due to the complex relations between image and text pairs in the domain of artwork images, the generated captions are evaluated using several quantitative and qualitative approaches. The performance is assessed using standard image captioning metrics and a recently introduced reference-free metric. The quality of the generated captions and the model’s capacity to generalize to new data is explored by employing the model to another art dataset to compare the relation between commonly generated captions and the genre of artworks. The overall results suggest that the model can generate meaningful captions that indicate a stronger relevance to the art historical context, particularly in comparison to captions obtained from models trained only on natural image datasets.

2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 1.91% to 6.69%. <div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Tao Chen ◽  
Mingfen Wu ◽  
Hexi Li

Abstract The automatic extraction of meaningful relations from biomedical literature or clinical records is crucial in various biomedical applications. Most of the current deep learning approaches for medical relation extraction require large-scale training data to prevent overfitting of the training model. We propose using a pre-trained model and a fine-tuning technique to improve these approaches without additional time-consuming human labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from Transformers (BERT), an approach for pre-training a model on large-scale unstructured text. We then combine BERT with a one-dimensional convolutional neural network (1d-CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments on three datasets, namely the BioCreative V chemical disease relation corpus, traditional Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus, show that the proposed approach achieves state-of-the-art results (giving a relative improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a traditional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/MedicalRelationExtraction.


2020 ◽  
Vol 34 (05) ◽  
pp. 7780-7788
Author(s):  
Siddhant Garg ◽  
Thuy Vu ◽  
Alessandro Moschitti

We propose TandA, an effective technique for fine-tuning pre-trained Transformer models for natural language tasks. Specifically, we first transfer a pre-trained model into a model for a general task by fine-tuning it with a large and high-quality dataset. We then perform a second fine-tuning step to adapt the transferred model to the target domain. We demonstrate the benefits of our approach for answer sentence selection, which is a well-known inference task in Question Answering. We built a large scale dataset to enable the transfer step, exploiting the Natural Questions dataset. Our approach establishes the state of the art on two well-known benchmarks, WikiQA and TREC-QA, achieving the impressive MAP scores of 92% and 94.3%, respectively, which largely outperform the the highest scores of 83.4% and 87.5% of previous work. We empirically show that TandA generates more stable and robust models reducing the effort required for selecting optimal hyper-parameters. Additionally, we show that the transfer step of TandA makes the adaptation step more robust to noise. This enables a more effective use of noisy datasets for fine-tuning. Finally, we also confirm the positive impact of TandA in an industrial setting, using domain specific datasets subject to different types of noise.


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

<div>Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 2.38% to 5.27%. The code and the pre-trained model will be available at https://github.com/linlei1214/SITS-BERT upon publication.</div><div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

<div>Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 2.38% to 5.27%. The code and the pre-trained model will be available at https://github.com/linlei1214/SITS-BERT upon publication.</div><div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

<div>Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 2.38% to 5.27%. The code and the pre-trained model will be available at https://github.com/linlei1214/SITS-BERT upon publication.</div><div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2040 ◽  
Author(s):  
Antoine d’Acremont ◽  
Ronan Fablet ◽  
Alexandre Baussard ◽  
Guillaume Quin

Convolutional neural networks (CNNs) have rapidly become the state-of-the-art models for image classification applications. They usually require large groundtruthed datasets for training. Here, we address object identification and recognition in the wild for infrared (IR) imaging in defense applications, where no such large-scale dataset is available. With a focus on robustness issues, especially viewpoint invariance, we introduce a compact and fully convolutional CNN architecture with global average pooling. We show that this model trained from realistic simulation datasets reaches a state-of-the-art performance compared with other CNNs with no data augmentation and fine-tuning steps. We also demonstrate a significant improvement in the robustness to viewpoint changes with respect to an operational support vector machine (SVM)-based scheme.


2020 ◽  
Author(s):  
Yu Zhang ◽  
Pierre Bellec

AbstractTransfer learning has been a very active research topic in natural image processing. But few studies have reported notable benefits of transfer learning on medical imaging. In this study, we sought to investigate the transferability of deep artificial neural networks (DNN) in brain decoding, i.e. inferring brain state using fMRI brain response over a short window. Instead of using pretrained models from ImageNet, we trained our base model on a large-scale neuroimaging dataset using graph convolutional networks (GCN). The transferability of learned graph representations were evaluated under different circumstances, including knowledge transfer across cognitive domains, between different groups of subjects, and among different sites using distinct scanning sequences. We observed a significant performance boost via transfer learning either from the same cognitive domain or from other task domains. But the transferability was highly impacted by the scanner site effect. Specifically, for datasets acquired from the same site using the same scanning sequences, using transferred features highly improved the decoding performance. By contrast, the transferability of representations highly decreased between different sites, with the performance boost reducing from 20% down to 7% for the Motor task and decreasing from 15% to 5% for Working-memory tasks. Our results indicate that in contrast to natural images, the scanning condition, instead of task domain, has a larger impact on feature transfer for medical imaging. With other advanced tools such as layer-wise fine-tuning, the decoding performance can be further improved through learning more site-specific high-level features while retaining the transferred low-level representations of brain dynamics.


Author(s):  
Xiaoyi Chen ◽  
Carole Faviez ◽  
Marc Vincent ◽  
Nicolas Garcelon ◽  
Sophie Saunier ◽  
...  

To identify patients with similar clinical profiles and derive insights from the records and outcomes of similar patients can help fast and precise diagnosis and other clinical decisions for rare diseases. Similarity methods are required to take into account the semantic relations between medical concepts and also the different relevance of all medical concepts presented in patients’ medical records. In this paper, we introduce the methods developed in the context of rare disease screening/diagnosis from clinical data warehouse using medical concept embedding and adjusted aggregations. Our methods provided better preliminary results than baseline methods, with a significant improvement of precision among the top ranked similar patients, which is encouraging for further fine-tuning and application on a large-scale dataset for new/candidate patient identification.


Sign in / Sign up

Export Citation Format

Share Document