scholarly journals A Novel Experimental Test Bench to Investigate the Effects of Cutting Fluids on the Frictional Conditions in Metal Cutting

2020 ◽  
Vol 4 (2) ◽  
pp. 45 ◽  
Author(s):  
Thomas Lakner ◽  
Marvin Hardt

The tribological effect of cutting fluids in the machining processes to reduce the friction in the cutting zone is still widely unknown. Most test benches and procedures do not represent the contact conditions of machining processes adequately, especially for interrupted contacts. This results in a lack of knowledge of the tribological behavior in machining processes. To close this knowledge gap, a novel experimental test bench to investigate the effects of cutting fluids on the frictional conditions in metal cutting under high-pressure cutting fluid supply was developed and utilized within this work. The results show that there is a difference between the frictional forces in interrupted contact compared to continuous contact. Furthermore, the cutting fluid parameters of supply pressure, volumetric flow rate, and impact point of the cutting fluid jet influence the frictional forces, the intensities of which depend on the workpiece material. In conclusion, the novel test bench allows examining the frictional behavior in interrupted cuts with an unprecedented precision, which contributes to a knowledge-based design of the cutting fluid supply for cutting tools.

2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881536 ◽  
Author(s):  
Yong Zhou ◽  
Xiaogang Zhou

The reliable and repeatable experimental ground testing of aircraft actuator is an essential phase before flight testing. It is not an easy task to simulate the alternating aerodynamic forces on actuators reasonably and accurately in a laboratory. In this article, an experimental test bench is designed to simulate the aerodynamic forces by a hydraulic actuator, which replicates the operating conditions that the actuator will encounter in service. In order to improve the force control performance, a feed-forward compensator and a fuzzy proportional–integral–derivative controller are designed. Both simulation and experimental results show that the designed method can improve the control performance.


2021 ◽  
Author(s):  
Hui Liu ◽  
Markus Meurer ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Cutting fluids are an important part of today's metal cutting processes, especially when machining aerospace alloys. They offer the possibility to extend tool life and improve cutting performance. However, the equipment and handling of cutting fluids also raises manufacturing costs. To reduce the negative impact of the high cost of cutting fluids, cooling systems and strategies are constantly being optimized. In most existing works, the influences of different cooling strategies on the relevant process parameters, such as tool wear, cutting forces, chip breakage, etc., are empirically investigated. Due to the limitations of experimental methods, analysis and modeling of the working mechanism has so far only been carried out at a relatively abstract level. For a better understanding of the mechanism of cutting fluids, a thermal coupled two-dimensional simulation approach for the orthogonal cutting process was developed in this work. This approach is based on the Coupled Eulerian Lagrangian (CEL) method and provides a detailed investigation of the cutting fluid’s impact on chip formation and tool temperature. For model validation, cutting tests were conducted on a broaching machine. The simulation resolved the fluid behavior in the cutting area and showed the distribution of convective cooling on the tool surface. This work demonstrates the potential of CEL based cutting fluid simulation, but also pointed out the shortcomings of this method.


2013 ◽  
Vol 54 (1) ◽  
Author(s):  
Оleksii Puzik ◽  
Gennadii Zaionchkovskyi ◽  
Taras Tarasenko

1997 ◽  
Vol 119 (1) ◽  
pp. 86-94 ◽  
Author(s):  
D. A. Stephenson ◽  
P. Bandyopadhyay

Obtaining accurate baseline force data is often the critical step in applying machining simulation codes. The accuracy of the baseline cutting data determines the accuracy of simulated results. Moreover, the testing effort required to generate suitable data for new materials determines whether simulation provides a cost or time advantage over trial-and-error testing. The efficiency with which baseline data can be collected is limited by the fact that simulation programs do not use standard force or pressure equations, so that multiple sets of tests must be performed to simulate different machining processes for the same tool-workpiece material combination. Furthermore, many force and pressure equations do not include rake angle effects, so that separate tests are also required for different cutter geometries. This paper describes a unified method for simulating cutting forces in different machining processes from a common set of baseline data. In this method, empirical equations for cutting pressures or forces as a function of the cutting speed, uncut chip thickness, and tool normal rake angle are fit to baseline data from end turning, bar turning, or fly milling tests. Forces in specific processes are then calculated from the empirical equations using geometric transformations. This approach is shown to accurately predict forces in end turning, bar turning, or fly milling tests on five common tool-work material combinations. As an example application, bar turning force data is used to simulate the torque and thrust force in a combined drilling and reaming process. Extrapolation errors and corrections for workpiece hardness variations are also discussed.


Sign in / Sign up

Export Citation Format

Share Document