scholarly journals Influence of the CO2 Content in Shielding Gas on the Temperature of the Shielding Gas Nozzle during GMAW Welding

2020 ◽  
Vol 4 (4) ◽  
pp. 113
Author(s):  
Martin Lohse ◽  
Marcus Trautmann ◽  
Uwe Füssel ◽  
Sascha Rose

Gas metal arc welding torches are commonly chosen based on their current-carrying capacity. It is known that the current-carrying capacity of welding torches under CO2 is usually higher than under argon dominated shielding gases. In this publication, the extent to which this can be attributed to the shielding gas dependent arc radiation is investigated. For this purpose, the influence of the shielding gas on the thermal load of the shielding gas nozzle of a GMAW torch was calorimetrically measured. These experiments were carried out for four different shielding gases (argon, CO2, and two argon/CO2 mixtures). The measurements were all performed at an average current of 300 A. The welding current was set by adjusting the wire feed rate or the voltage correction. For each case, a separate set of experiments was done. It is shown that the changed arc radiation resulting from the different shielding gases has an influence on the heat input into the gas nozzle, and thus into the torch. For the same shielding gas, this influence largely correlates with the welding voltage.

Author(s):  
U. Ersoy ◽  
S. J. Hu ◽  
E. Kannatey-Asibu

A lumped parameter dynamical model is developed to describe the metal transfer for gas metal arc welding (GMAW) in the globular mode. The oscillations of molten drop are modeled using a mass-spring-damper system with variable mass and spring coefficient. An analytical solution is developed for the variable coefficient system to better understand the effect of various model parameters on the drop oscillations. The effect of welding drop motion on the observed current and voltage signals is investigated and the model agrees well with the experimental results. Furthermore, the effect of wire feeding rate (or welding current) on the metal transfer cycle time is studied and the model successfully estimates the cycle times for different wire feeding rates.


2013 ◽  
Vol 718-720 ◽  
pp. 202-208 ◽  
Author(s):  
Mao Ai Chen ◽  
Yuan Ning Jiang ◽  
Chuan Song Wu

With high-speed welding inverter and precisely controlling the welding current with arc-bridge state, advanced pulse current waveforms can be produced to optimize the transfer characteristics of short circuiting transfer welding. In this paper, the images of droplet/wire, and the transient data of welding current and arc voltage were simultaneously recorded to study the influence of peak arcing current, background arcing current and tail-out time on the stability of short circuiting transfer process. It was found that maximum short circuiting transfer stability is reached under specific welding conditions. Any deviation from these conditions will cause abnormal rises in arc voltage indicating instantaneous arc extinguishing and greater spatter. Optimal welding conditions were obtained to achieve the maximum stability of short circuiting metal transfer process.


2004 ◽  
Vol 127 (3) ◽  
pp. 590-597 ◽  
Author(s):  
Guo Xu ◽  
William W. Schultz ◽  
Elijah Kannatey-Asibu

A numerical model is developed to simulate the short-circuiting metal transfer process during gas metal arc welding (GMAW). The energy equation and the Marangoni convection are considered for the first time in analyzing the short-circuiting time. A front-tracking free surface method explicity tracks the profile of the liquid bridge. The electromagnetic field, distribution of velocity, pressure, and temperature are calculated using the developed model. Effects of welding current, surface tension temperature coefficient, and initial drop volume on short-circuiting duration time are examined. The results show that both the electromagnetic force and Marangoni shear stress play significant roles in short-circuiting transfer welding.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940036
Author(s):  
Juan Pu ◽  
Shan Wu ◽  
Qingxian Hu ◽  
Yuxin Wang

A three-dimensional numerical model of double-arc in tandem gas metal arc welding (GMAW) was established based on the theory of arc physics, momentum equation, energy equation, continuous equation and Maxwell equations. The effects of different welding current on temperature field, velocity field and pressure field on the surface of workpieces were investigated. The results showed that the maximum values of arc temperature, arc plasma velocity and arc pressure on workpieces surface were increased with the increasing welding current. These maximum values occurred at the tip of double-wire. The current density and axial deflection angle of coupling arc were increased following the increasing welding current.


2018 ◽  
Vol 789 ◽  
pp. 64-68
Author(s):  
Yustiasih Purwaningrum ◽  
Medilla Kusriyanto ◽  
Rudi Kurniawan ◽  
Okto Akbar Rizky

This paper presented the effect of DE-GMAW (Double electrode gas metal arc welding)resistance on mechanical and physical properties of aluminium alloywelded. DE-GMAWis amethodof welding process that use two electrode. A non consumable torch is added to bypass the current inorder to reduce the heat input. The variation resistance used were 15Ω, 30Ω and 45Ω. Universaltesting machine and Vickers microhardness were used to measured mechanical properties of weldmetals with respect to strength and hardness. The microstructure was investigated by microscopeoptic with 100 x magnification. The grain size of weld metals with resistance value 30Ω is finer than15Ω and 45Ω. Dye penetrant test shows DE-GMAW welding machine that made have goodperformance because it can produce welding joint without surface crack. The results show thatresistance values optimum to DE-GMAW welding on aluminium alloy 5051 with 4 mm thickness is30Ω. It can be seen from the tensile test that shows the highest tensile strength is found in the DEGMAWwelding with resistance values 30Ω.


Sign in / Sign up

Export Citation Format

Share Document