shielding gases
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Walker A. S. Filho ◽  
Guilherme M. S. Silveira ◽  
Jeferson F. M. Costa ◽  
Matheus C. Mendes ◽  
Luís Felipe G. de Souza ◽  
...  

2020 ◽  
Vol 58 (12) ◽  
pp. 852-862
Author(s):  
Jae-Deuk Kim ◽  
Jae Won Kim ◽  
Joo Yong Cheon ◽  
Yang-Do Kim ◽  
Changwook Ji

Generally, molds are fabricated by the machining of massive billets of tool steels, such as AISI4140 or H13, but it has drawbacks, such as a large material loss and long-delivery time. The Wire-Arc Additive Manufacturing (WAAM) process could be an alternative fabrication method. It has the advantages of less material loss, short-delivery time, and the chance to make a reinforced mold using dissimilar materials. 5 Cr – 4 Mo steel wire has high potential to produce molds via the WAAM process. This is a commercial tool steel solid wire initially designed for the repair and modification of tools and molds that has superior hot wear resistance and toughness. However, no study has examined the WAAM of tool steels, even though it has high potential and advantages. Shielding gas has a significant effect on the performance of the WAAM process, which is based on gas metal arc welding (GMAW). Argon (an inert gas) and carbon dioxide (a reactive gas) are generally used for the GMAW of steel alloys, and they are frequently used as mixed gases at various ratios. Shielding gases have a significant influence on the arc stability, weld quality, and formation of weld defects. Therefore, using a proper shielding gas for the material and process is important to sound WAAM performance. This paper discusses the effect of the shielding gas on the additive manufacturability of tool steel, as a first step for the WAAM of die casting molds. The experiments were conducted with two different shielding gases, M21 (Ar + 18% CO2) and C1 (100% CO2). The use of C1 showed neither surface contamination nor internal defects, and resulted in a larger amount of deposition than the M21.


2020 ◽  
Vol 4 (4) ◽  
pp. 113
Author(s):  
Martin Lohse ◽  
Marcus Trautmann ◽  
Uwe Füssel ◽  
Sascha Rose

Gas metal arc welding torches are commonly chosen based on their current-carrying capacity. It is known that the current-carrying capacity of welding torches under CO2 is usually higher than under argon dominated shielding gases. In this publication, the extent to which this can be attributed to the shielding gas dependent arc radiation is investigated. For this purpose, the influence of the shielding gas on the thermal load of the shielding gas nozzle of a GMAW torch was calorimetrically measured. These experiments were carried out for four different shielding gases (argon, CO2, and two argon/CO2 mixtures). The measurements were all performed at an average current of 300 A. The welding current was set by adjusting the wire feed rate or the voltage correction. For each case, a separate set of experiments was done. It is shown that the changed arc radiation resulting from the different shielding gases has an influence on the heat input into the gas nozzle, and thus into the torch. For the same shielding gas, this influence largely correlates with the welding voltage.


2020 ◽  
pp. 65-71
Author(s):  
Bożena Szczucka-Lasota ◽  
Tomasz Węgrzyn ◽  
Bogusław Łazarz ◽  
Adam Jurek ◽  
Krzysztof Ireneusz Wilczyński

Steels of the DOCOL group, characterised by high tensile strength and yield point, play an important role in the manufacturing of means of transport. However, the above-named steels are difficult to weld and joints made in them do not guarantee comparable mechanical properties. The research work discussed in the article aimed to determine process parameters suitable for the welding of a moving platform made of steel DOCOL 1200M as well as to assess the effect of welding parameters on the quality of obtained joints. The tests also involved analysing the effect of shielding gases, preheating and interpass temperature on the quality of an 8 mm thick MAG welded moving platform structure.


Sign in / Sign up

Export Citation Format

Share Document