scholarly journals Towards Material-Batch-Aware Tool Condition Monitoring

2021 ◽  
Vol 5 (4) ◽  
pp. 103
Author(s):  
Benjamin Lutz ◽  
Philip Howell ◽  
Daniel Regulin ◽  
Bastian Engelmann ◽  
Jörg Franke

In subtractive manufacturing, process monitoring systems are used to observe the manufacturing process, to predict maintenance actions and to suggest process optimizations. One challenge, however, is that the observable signals are influenced not only by the degradation of the cutting tool, but also by deviations in machinability among material batches. Thus it is necessary to first predict the respective material batch before making maintenance decisions. In this study, an approach is shown for batch-aware tool condition monitoring using feature extraction and unsupervised learning to analyze high-frequency control data in order to detect clusters of materials with different machinability, and subsequently optimize the respective manufacturing process. This approach is validated using cutting experiments and implemented as an edge framework.

1999 ◽  
Vol 8 (3) ◽  
pp. 096369359900800 ◽  
Author(s):  
P. S. Sreejith ◽  
R. Krishnamurthy

During manufacturing, the performance of a cutting tool is largely dependent on the conditions prevailing over the tool-work interface. This is mostly dependent on the status of the cutting tool and work material. Acoustic emission studies have been performed on carbon/phenolic composite using PCD and PCBN tools for tool condition monitoring. The studies have enabled to understand the tool behaviour at different cutting speeds.


2017 ◽  
Vol 121 ◽  
pp. 02002
Author(s):  
Marinela Inţă ◽  
Achim Muntean ◽  
Sorin-Mihai Croitoru

Author(s):  
V.I. GOLOVIN ◽  
S.Yu. RADCHENKO

One of the most important tasks of serial and mass production is to maintain the continuity of the technological process in order to reduce equipment downtime and, as a result, the cost of production. One of the systems is the tool condition monitoring system. However, the solutions used today are complex software and hardware systems that are not available for most medium and small productions. The article proposes a system based on a comparative analysis of the applied tool with reference instances. The results of the analysis are sent to the decision-making system, which determines the feasibility of further use of the cutting tool for subsequent machining. An example of an experimental study of milling processing is given. The results obtained show the possibility and rationality of using this model to predict the state of the instrument.


2016 ◽  
Vol 16 (2) ◽  
pp. 103-114
Author(s):  
M. Prakash Babu ◽  
Balla Srinivasa Prasad

AbstractIn the present work investigation primarily focuses on identifying the presence of cutting tool vibrations during face turning process. For this purpose an online non-contact vibration transducer i. e. laser Doppler Vibrometer is used as part of a novel approach. The revisions in the values of cutting forces, vibrations and acoustic optic emission signals with cutting tool wear are recorded and analyzed. This paper presents a mathematical model in an attempt to understand tool lifeunder vibratory cutting conditions. Tool wear and cutting force data are collected in the dry machiningof AISI 1040 steel at different vibrationinduced test conditions. Identifying the correlation among tool wear, cutting forces and displacement due to vibration is a critical task in the present study. These results are used to predict the evolution of displacement and tool wear in the experiment. Specifically, the research tasks include: to provide an appropriate experimental data to prove the mathematical model of tool wear based on the influence of cutting tool vibrations in turning.The modeling is focused on demonstrating the scientific relationship between the process variables such as vibration displacement, vibration amplitude, feedrate, depth of cut and spindle speed while getting into account machine dynamics effect and the effects such as surface roughness and tool wear generated in the operation. Present work also concentrates on the improvement in machinability during vibration assisted turning with different cutting tools. The effect of work piece displacement due to vibration on the tool wear is critically analyzed. Finally, tool wear is established on the basis of the maximum displacement that can be tolerated in a process for an effective tool condition monitoring system.


Sign in / Sign up

Export Citation Format

Share Document