scholarly journals Life Cycle Performance Assessment Tool Development and Application with a Focus on Maintenance Aspects

2019 ◽  
Vol 7 (8) ◽  
pp. 280 ◽  
Author(s):  
Paola Gualeni ◽  
Giordano Flore ◽  
Matteo Maggioncalda ◽  
Giorgia Marsano

Ships are among the most complex systems in the world. The always increasing interest in environmental aspects, the evolution of technologies and the introduction of new rule constraints in the maritime field have compelled the innovation of the ship design approach. At an early design stage, there is the need to compare different design solutions, also in terms of environmental performance, building and operative costs over the whole ship life cycle. In this context, the Life Cycle Performance Assessment (LCPA) tool allows an integrated design approach merging the evaluation of both costs and environmental performances on a comparative basis, among different design solutions. Starting from the first tool release, this work aims to focus on the maintenance of the propulsion system, developing a flexible calculation method for maintenance costs prediction, based on the ship operational profiles and the selected technical solution. After the improvement, the whole LCPA tool has been applied on a research vessel to evaluate, among different propulsion layout solutions, the one with the more advantageous performance in terms of costs during the whole vessel operating life. The identification of the best design solution is strictly dependent on the selection criterion and the point of view of the interested parties using the LCPA tool, e.g., the shipbuilder or the ship-owner.

Author(s):  
Haibing Li ◽  
Roland Lachmayer

AbstractDesign is a complex problem-solving activity that transforms design restrictions and requirements into a set of constraints and explores the feasible solutions to satisfy those constraints. However, design solutions generated by traditional modeling approaches are hardly to deal with such constraints, particularly for the exploration of the possible design solution space to enhance the quality of the design outputs and confront the evolving design requirements. In this regard, the Generative Design Approach (GDA) is considered as an efficient method to explore a large design solution space by transforming the design problem into a configuration problem. Fundamentally, GDA explores and stores all the necessary knowledge through a design skeleton and a set of design elements. Thus, design solution space is easily explored by configuring variable design elements via iterative design processes. Further, the output model is not only a design solution but also a design concept that designers could manipulate to explore unconsidered design configurations. Finally, a crank creation as a running example confirmed that GDA provides concrete aids to enhance the diversity of design solutions.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ilaria Venanzi ◽  
Riccardo Castellani ◽  
Laura Ierimonti ◽  
Filippo Ubertini

Stakeholders of civil infrastructures have to usually choose among several design alternatives in order to select a final design representing the best trade-off between safety and economy, in a life-cycle perspective. In this framework, the paper proposes an automated procedure for the estimation of life-cycle repair costs of different bridge design solutions. The procedure provides the levels of safety locally guaranteed by the selected design solution and the related total life-cycle cost. The method is based on the finite element modeling of the bridge and uses design traffic models as suggested by international technical standards. Both the global behavior and the transversal cross section of the bridge are analyzed in order to provide local reliability indexes. Several parameters involved in the design, such as geometry and loads and materials’ characteristics, are considered as uncertain. Degradation models are adopted for steel carpentry and rebars. The application of the procedure to a road bridge case study shows its potential in providing local safety levels for different limit states over the entire lifetime of the bridge and the life-cycle cost of the infrastructure, highlighting the importance of the local character of the life-cycle cost analysis.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-12
Author(s):  
Shaurav Alam ◽  
Erez Allouche ◽  
Ray Sterling ◽  
Wendy Condit ◽  
John Matthews ◽  
...  

Author(s):  
JONATHAN C. BORG ◽  
XIU-TIAN YAN ◽  
NEAL P. JUSTER

The problem addressed in this paper is that design decisions can have a propagation effect spanning multiple life-phases influencing life-cycle metrics such as cost, time, and quality. It introduces a computational framework of a “Knowledge of life-cycle Consequences (KC) approach” aimed at allowing designers to foresee and explore effectively unintended, solution specific life-cycle consequences (LCCs) during solution synthesis. The paper presents a phenomena model describing how LCCs are generated from two fundamentally different conditions: noninteracting and interacting synthesis decision commitments. Based on this understanding, the KC approach framework has been developed and implemented as a Knowledge-Intensive CAD (KICAD) tool named FORESEE. The framework consists of three frames: an artefact life modelling frame, an operational frame, and an LCC knowledge modelling frame. This paper focuses on the knowledge modelling frame, composed basically of synthesis elements, consequence inference knowledge, and consequence action knowledge. To evaluate the influence of design decision consequences on artefact life-phases, cost, time and quality performance measures are used within the frame. Using these metrics, the life-cycle implications of a decision can be instantly updated and fully appreciated. An evaluation of the approach was carried out by applying FORESEE to thermoplastic component design. The results provide a degree of evidence that the approach integrates the activity of component design synthesis with the activity of foreseeing artefact life issues including fluctuations in life-cycle metrics. This makes the approach fundamentally different from the conventional approach in which first a candidate design solution is generated and then, at a penalty of extra time, an analysis of the solution for conflicts with artefact life issues is carried out. The framework thus provides a significant step towards the realization of a “Design Synthesis for Multi-X” approach to component design, although further work is required to exploit practically its utilization.


2015 ◽  
Vol 110 ◽  
pp. 49-61 ◽  
Author(s):  
Jakub Cichowicz ◽  
Gerasimos Theotokatos ◽  
Dracos Vassalos

Sign in / Sign up

Export Citation Format

Share Document