scholarly journals Hydrodynamic Performance of Submerged Plates During Focused Waves

2019 ◽  
Vol 7 (11) ◽  
pp. 389 ◽  
Author(s):  
Fang ◽  
Yang ◽  
Guo

Submerged horizontal plates are widely employed in research of wave structure interaction as a simplification of coastal and ocean engineering structures. The hydrodynamic performance of submerged horizontal plates under focused waves has been seldom reported. Based on potential flow theory, this paper presents a general solution of the hydrodynamic pressure and wave forces exerted on submerged plates by a focused wave group. An existing experiment and two limiting cases are used to validate the accuracy of the present analytical model. With the validated model, the effect of wave properties and the configuration of the wave structure system on the hydrodynamic performance of submerged plates are investigated. It is found that the hydrodynamic performance of submerged horizontal plates varies with incident focused wave with different peak frequencies. The structural breadth significantly changes the hydrodynamic performance while the structural height has little influence. This paper shows the usefulness of potential flow theory for the preliminary calculation of wave loads on coastal and ocean engineering structures generated by focused waves.

1967 ◽  
Vol 89 (3) ◽  
pp. 503-511 ◽  
Author(s):  
A. Shabaik ◽  
S. Kobayashi ◽  
E. G. Thomsen

Theoretical and experimental flow fields of several extrusion ratios of lead in plane strain were compared. It was found that, for extrusion ratios where dead metal exists, the agreement between the potential and experimental flow nets was better for small reductions when a modified boundary approaching a flow line was used. It was also found that when the flow changed direction gradually, the potential flow net was in good agreement with the experimental one. The solution obtained is unique and complete.


2016 ◽  
Author(s):  
Lilan Zhou ◽  
Ji Yang ◽  
Qian Wang ◽  
Jiangtao Qin

Waves generated by passing ships have potential adverse impacts on the environment (beach erosion, ecological disturbance, structures damage) and other waterway users (navigations, moored ships) in the coastal and sheltered areas. But issues related to waves of ships were addressed rarely in China until now. Accurate prediction of wash waves is the first step to control the washes from passing ships and it’s significant to reduce the effects of washes. A coupled method is used in this paper to simulate the washes and its effects caused by the passing ship. A potential flow theory method is adopted as the stationary wave generation model; a non-hydrostatic wave flow model is used as the wave propagation model; a time domain method is chosen as the model for simulating the forces and moments of mooring ship. The waves calculated by a potential flow theory method in the near field are used as the input for the non-hydrostatic wave-flow model to obtain the far field waves. A time-domain representation of the wave-cut at the location of the passing vessel is transformed to the frequency-domain and is used as the input for the diffraction computations. Parts of the calculated results are validated experimentally, satisfactory agreement is demonstrated.


Brodogradnja ◽  
2016 ◽  
Vol 67 (4) ◽  
pp. 109-122
Author(s):  
Ivana Martić ◽  
◽  
Nastia Degiuli ◽  
Ivan Ćatipović

2014 ◽  
Vol 644-650 ◽  
pp. 628-631
Author(s):  
Ke Yi Li ◽  
Zhong Cai Pei

When the bubble moves in the vicinity of a free surface, the movement will be affected by the buoyancy and the Bjerknes effect. Blake and Gibson proposed the criterion which determined the motion direction of the jet and the dynamics of bubble. They proposed the jet wouldn’t be formed in the condition that . Based on the potential flow theory, boundary element method (BEM) is used to calculate three typical examples in this paper in order to study the dynamics of the bubble under the combined action of the Bjerknes effect of the free surface and the buoyancy. It is found out during the analysis that the Blake criterion is applicable to predict the conditions that and .


Author(s):  
Sung-Jae Kim ◽  
Weoncheol Koo ◽  
Chul H. Jo

Abstract In this study, a latching control strategy was utilized to increase the efficiency of a heaving buoy-type point absorber with a hydraulic Power take-off (PTO) system. For this purpose, the hydrodynamic performance of a floating buoy was analyzed based on the potential flow theory and Cummins equation. Nonlinear Froude-Krylov (FK) force according to instantaneous wetted surface of a buoy was calculated by a theoretical solution. The effect of the latching control on a point absorber was evaluated by considering PTO performance with hydrodynamic coefficients including nonlinear FK force. The hydraulic PTO system was modeled as an approximate coulomb damping force.


2013 ◽  
Vol 631-632 ◽  
pp. 809-816
Author(s):  
Chen Shen ◽  
Hui Zhu ◽  
Zhi Gang Yang

Regular formulae for lateral aerodynamic force cannot give precise prediction under unsteady crosswind. By generalizing potential flow theory and taking the aerodynamic derivative into consideration, the semi-empirical expression for lateral aerodynamic force is derived. In order to determine the coefficients in the semi-empirical formula, the model of a typical double-deck coach is investigated in a sequence of numerical simulations under pure crosswind condition (i.e. linear crosswind, pseudo-step crosswind, sinusoidal crosswind). Moreover, advantages of the semi-empirical formula over the regular one are revealed. Further inspections into the flow field derived from the theory of vortex motion indicate that the deviation between the prediction given by semi-empirical formulae and that by numerical simulation is caused by the non-viscous assumption in potential flow theory. The lateral aerodynamic force depends linearly on the crosswind aerodynamic derivative. Situations in which the coach is moving in the direction perpendicular to the wind velocity are also studied to find the cause of the error in semi-empirical formula. Furthermore, the semi-empirical formula is revised by introducing the “damping model method”. A relatively complete system of prediction for lateral aerodynamic force on a coach, which is of practical engineering significance, has been constructed.


Sign in / Sign up

Export Citation Format

Share Document