scholarly journals Application of Remote Sensing Methods to Monitor Coastal Zones

2020 ◽  
Vol 8 (6) ◽  
pp. 391 ◽  
Author(s):  
Luis Pedro Almeida ◽  
Rafael Almar

In this Special Issue “Application of Remote Sensing Methods to Monitor Coastal Zones” nine original research papers were published, with topics covering a wide range of ranging of remote sensing applications including coastal topography, bathymetry, land cover, and nearshore hydrodynamics [...]

2005 ◽  
Vol 11 (11) ◽  
pp. 1339-1356 ◽  
Author(s):  
Adam L. Webster ◽  
William H. Semke

The ability to eliminate, or effectively control, vibration in remote sensing applications is critical. Any perturbations of an imaging system are greatly magnified over the hundreds of kilometers from the orbiting space platform to the Earth's surface. Space platforms, such as the International Space Station, are not as predictable or stable as many other spacecraft. Therefore, an effective vibration isolation and/or absorber system is needed that operates over a wide range of excitation frequencies. A passive system is also preferred to reduce the resources required, as well as to provide a reliable and self-contained system. To accomplish these goals, a vibration amplitude limiting system has been developed that uses both vibration isolation and absorber components. Viscoelastic structural elements that act as both a spring and a damper in a single element are implemented in the design. This configuration also demonstrates a favorable frequencydependent response and produces a system with improved dynamic behavior compared to conventional spring and damper designs. This rotation limiting vibration system has been designed and analyzed for use in digital remote sensing imaging. The transmissibility and the ground jitter associated with the system are determined. A summary of these results will be presented along with a comparison to a more conventional vibration isolation/absorber system.


Author(s):  
Afshan Saleem

Hyper-spectral images contain a wide range of bands or wavelength due to which they are rich in information. These images are taken by specialized sensors and then investigated through various supervised or unsupervised learning algorithms. Data that is acquired by hyperspectral image contain plenty of information hence it can be used in applications where materials can be analyzed keenly, even the smallest difference can be detected on the basis of spectral signature i.e. remote sensing applications. In order to retrieve information about the concerned area, the image has to be grouped in different segments and can be analyzed conveniently. In this way, only concerned portions of the image can be studied that have relevant information and the rest that do not have any information can be discarded. Image segmentation can be done to assort all pixels in groups. Many methods can be used for this purpose but in this paper, we discussed k means clustering to assort data in AVIRIS cuprite, AVIRIS Muffet and Rosis Pavia in order to calculate the number of regions in each image and retrieved information of 1st, 10th and100th band. Clustering has been done easily and efficiently as k means algorithm is the easiest approach to retrieve information.


Fire Ecology ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Andrew T. Hudak ◽  
Andrea E. Thode ◽  
Jan W. van Wagtendonk

2021 ◽  
Vol 13 (23) ◽  
pp. 4734
Author(s):  
Paweł Terefenko ◽  
Jacek Lubczonek ◽  
Dominik Paprotny

Coastal regions are susceptible to rapid changes as they constitute the boundary between the land and the sea [...]


Sign in / Sign up

Export Citation Format

Share Document