scholarly journals Failure Pressure Prediction of a Corroded Pipeline with Longitudinally Interacting Corrosion Defects Subjected to Combined Loadings Using FEM and ANN

2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Michael Lo ◽  
Saravanan Karuppanan ◽  
Mark Ovinis

Machine learning tools are increasingly adopted in various industries because of their excellent predictive capability, with high precision and high accuracy. In this work, analytical equations to predict the failure pressure of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loads of internal pressure and longitudinal compressive stress were derived, based on an artificial neural network (ANN) model trained with data obtained from the finite element method (FEM). The FEM was validated against full-scale burst tests and subsequently used to simulate the failure of a pipeline with various corrosion geometric parameters and loadings. The results from the finite element analysis (FEA) were also compared with the Det Norske Veritas (DNV-RP-F101) method. The ANN model was developed based on the training data from FEA and its performance was evaluated after the model was trained. Analytical equations to predict the failure pressure were derived based on the weights and biases of the trained neural network. The equations have a good correlation value, with an R2 of 0.9921, with the percentage error ranging from −9.39% to 4.63%, when compared with FEA results.

2012 ◽  
Author(s):  
Norhisham Bakhary

Kertas kerja ini memaparkan kajian berkenaan keberkesanan Artificial Neural Network (ANN) dalam mengenal pasti kerosakan di dalam struktur. Data dari getaran seperti frekuensi semula jadi dan mod bentuk digunakan sebagai data masukan bagi ANN untuk meramalkan lokasi dan tahap kerosakan bagi struktur lantai. Analisis unsur terhingga (Finite Element Analysis) telah digunakan untuk memperoleh ciri–ciri dinamik bagi struktur–struktur rosak dan tidak rosak untuk ‘melatih’ model ‘neural network’. Senario kerosakan yang berbeza disimulasikan dengan mengurangkan kekukuhan elemen pada lokasi yang berbeza sepanjang struktur tersebut. Berbagai kombinasi data masukan bagi mod yang berbeza telah digunakan untuk memperolehi model ANN yang terbaik. Hasil kajian ini menunjukkan ANN mampu memberikan keputusan yang baik dalam meramal kerosakan pada struktur lantai tersebut. Kata kunci: Ramalan kerosakan struktur, Artificial Neural Network This paper investigates the effectiveness of artificial neural network (ANN) in identifying damages in structures. Global (natural frequencies) and local (mode shapes) vibration–based data has been used as the input to ANN for location and severity prediction of damages in a slab–like structure. A finite element analysis has been used to obtain the dynamic characteristics of intact and damaged structure to train the neural network model. Different damage scenarios have been introduced by reducing the local stiffness of the selected elements at different locations along the structure. Several combinations of input variables in different modes have been used in order to obtain a reliable ANN model. The trained ANN model is validated using laboratory test data. The results show that ANN is capable of providing acceptable result on damage prediction of tested slab structure. Key words: Structural damage detection, artificial neural network


Author(s):  
Louis D. Haussmann ◽  
Erol Tutumluer ◽  
Ernest J. Barenberg

Elastic layered programs (ELPs) are currently being used in mechanistic-based pavement design procedures for the analysis of jointed portland cement concrete pavements. Corrections must be made to stresses obtained from ELP solutions to account for the effects of finite slab size, load location on the slab, and load transfer efficiency of the joints. A preliminary artificial neural network (ANN) model is trained and used as a tool to predict the results of a finite-element analysis program for a standard pavement section. Under identical loading conditions, the trained neural network produces stresses within 1.2 percent of those obtained from finite-element analyses. The trained ANN model is found to be very effective for correcting ELP stresses, practically in the blink of an eye, with no requirements of complicated finite-element inputs. The preliminary ANN algorithm is currently being expanded to handle more general input conditions covering a wide range of slab sizes, slab thicknesses, subgrade supports, and loading conditions. Design curves created from these ANN algorithms will eventually enable pavement engineers to easily incorporate sophisticated state-of-the-art technology into routine practical design.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Junqing Yin ◽  
Jinyu Gu ◽  
Yongdang Chen ◽  
Wenbin Tang ◽  
Feng Zhang

Fixed beam structures are widely used in engineering, and a common problem is determining the load conditions of these structures resulting from impact loads. In this study, a method for accurately identifying the location and magnitude of the load causing plastic deformation of a fixed beam using a backpropagation artificial neural network (BP-ANN). First, a load of known location and magnitude is applied to the finite element model of a fixed beam to create plastic deformation, and a polynomial expression is used to fit the resulting deformed shape. A basic data set was established through this method for a series of calculations, and it consists of the location and magnitude of the applied load and polynomial coefficients. Then, a BP-ANN model for expanding the sample data is established and the sample set is expanded to solve the common problem of insufficient samples. Finally, using the extended sample set as training data, the coefficients of the polynomial function describing the plastic deformation of the fixed beam are used as input data, the position and magnitude of the load are used as output data, a BP-ANN prediction model is established. The prediction results are compared with the results of finite element analysis to verify the effectiveness of the method.


Author(s):  
К. Т. Чин ◽  
Т. Арумугам ◽  
С. Каруппанан ◽  
М. Овинис

Описываются разработка и применение искусственной нейронной сети (ИНС) для прогнозирования предельного давления трубопровода с точечным коррозионным дефектом, подверженного воздействию только внутреннего давления. Модель ИНС разработана на основе данных, полученных по результатам множественных полномасштабных испытаний на разрыв труб API 5L (класс от X42 до X100). Качество работы модели ИНС проверено в сравнении с данными для обучения, получен коэффициент детерминации R = 0,99. Модель дополнительно протестирована с учетом данных о предельном давлении корродированных труб API 5L X52 и X80. Установлено, что разработанная модель ИНС позволяет прогнозировать предельное давление с приемлемой погрешностью. С использованием данной модели проведена оценка влияния длины и глубины коррозионных дефектов на предельное давление. Выявлено, что глубина коррозии является более значимым фактором разрушения корродированного трубопровода. This paper describes the development and application of artificial neural network (ANN) to predict the failure pressure of single corrosion affected pipes subjected to internal pressure only. The development of the ANN model is based on the results of sets of full-scale burst test data of pipe grades ranging from API 5L X42 to X100. The ANN model was developed using MATLAB’s Neural Network Toolbox with 1 hidden layer and 30 neurons. Before further deployment, the developed ANN model was compared against the training data and it produced a coefficient of determination ( R ) of 0.99. The developed ANN model was further tested against a set of failure pressure data of API 5L X52 and X80 grade corroded pipes. Results revealed that the developed ANN model is able to predict the failure pressure with good margins of error. Furthermore, the developed ANN model was used to determine the failure trends when corrosion defect length and depth were varied. Results from this failure trend analysis revealed that corrosion defect depth is the most significant parameter when it comes to corroded pipeline failure.


2020 ◽  
Vol 4 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Kiu Toh Chin ◽  
◽  
Thibankumar Arumugam ◽  
Saravanan Karuppanan ◽  
Mark Ovinis ◽  
...  

This paper describes the development and application of artificial neural network (ANN) to predict the failure pressure of single corrosion affected pipes subjected to internal pressure only. The development of the ANN model is based on the results of 71 sets of full-scale burst test data of pipe grades ranging from API 5L X42 to X100. The ANN model was developed using MATLAB’s Neural Network Toolbox with 1 hidden layer and 30 neurons. Before further deployment, the developed ANN model was compared against the training data and it produced a coefficient of determination of 0.99. The developed ANN model was further tested against a set of failure pressure data of API 5L X52 and X80 grade corroded pipes. Results revealed that the developed ANN model is able to predict the failure pressure with good margins of error (within 15%). Furthermore, the developed ANN model was used to determine the failure trends when corrosion defect length and depth were varied. Results from this failure trend analysis revealed that corrosion defect depth is the most significant parameter when it comes to corroded pipeline failure.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


MATEMATIKA ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 53-64
Author(s):  
Siti Nabilah Syuhada Abdullah ◽  
Ani Shabri ◽  
Ruhaidah Samsudin

Since rice is a staple food in Malaysia, its price fluctuations pose risks to the producers, suppliers and consumers. Hence, an accurate prediction of paddy price is essential to aid the planning and decision-making in related organizations. The artificial neural network (ANN) has been widely used as a promising method for time series forecasting. In this paper, the effectiveness of integrating empirical mode decomposition (EMD) into an ANN model to forecast paddy price is investigated. The hybrid method is applied on a series of monthly paddy prices fromFebruary 1999 up toMay 2018 as recorded in the Malaysian Ringgit (MYR) per metric tons. The performance of the simple ANN model and the EMD-ANN model was measured and compared based on their root mean squared Error (RMSE), mean absolute error (MAE) and mean percentage error (MPE). This study finds that the integration of EMD into the neural network model improves the forecasting capabilities. The use of EMD in the ANN model made the forecast errors reduced significantly, and the RMSE was reduced by 0.012, MAE by 0.0002 and MPE by 0.0448.


2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Ali M. Al-Salihi ◽  
Zahraa A. AL-Ramahy

Soil temperature is an important meteorological variable which plays a significant role in hydrological cycle. In present study, artificial intelligence technique employed for estimating for 3 daysa head soil temperature estimation at 10 and 20 cm depth. Soil temperature daily data for the period 1 January 2012 to 31 December 2013 measured in three stations namely (Mosul, Baghdad and Muthanna) in Iraq. The training data set includes 616 days and the testing data includes 109 days. The Levenberg-Marquardt, Scaled Conjugate Gradient and Bayesian regularization algorithms. To evaluate the ANN models, Root mean square error (RMSE), Mean absolute error (MAE), Mean absolute percentage error (MAPE) and Correlation Coefficient (r) were determined. According to the four statistical indices were calculated of the optimum ANN model, it was ANN model (3) in Muthanaa station for the depth 10 cm and ANN model (3) in Baghdad station for the depth 20 were (RMSE=0.959oC, MAE=0.725, MAPE=4.293, R=0.988) and (RMSE=0.887OC, MAE=0.704, MAPE=4.239, R=0.993) respectively, theses statistical criteria shown the efficiency of artificial neural network for soil temperature estimation.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2021 ◽  
Vol 75 (5) ◽  
pp. 277-283
Author(s):  
Jelena Lubura ◽  
Predrag Kojic ◽  
Jelena Pavlicevic ◽  
Bojana Ikonic ◽  
Radovan Omorjan ◽  
...  

Determination of rubber rheological properties is indispensable in order to conduct efficient vulcanization process in rubber industry. The main goal of this study was development of an advanced artificial neural network (ANN) for quick and accurate vulcanization data prediction of commercially available rubber gum for tire production. The ANN was developed by using the platform for large-scale machine learning TensorFlow with the Sequential Keras-Dense layer model, in a Python framework. The ANN was trained and validated on previously determined experimental data of torque on time at five different temperatures, in the range from 140 to 180 oC, with a step of 10 oC. The activation functions, ReLU, Sigmoid and Softplus, were used to minimize error, where the ANN model with Softplus showed the most accurate predictions. Numbers of neurons and layers were varied, where the ANN with two layers and 20 neurons in each layer showed the most valid results. The proposed ANN was trained at temperatures of 140, 160 and 180 oC and used to predict the torque dependence on time for two test temperatures (150 and 170 oC). The obtained solutions were confirmed as accurate predictions, showing the mean absolute percentage error (MAPE) and mean squared error (MSE) values were less than 1.99 % and 0.032 dN2 m2, respectively.


Sign in / Sign up

Export Citation Format

Share Document