scholarly journals Failure pressure prediction of pipeline with single corrosion defect using artificial neural network

2020 ◽  
Vol 4 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Kiu Toh Chin ◽  
◽  
Thibankumar Arumugam ◽  
Saravanan Karuppanan ◽  
Mark Ovinis ◽  
...  

This paper describes the development and application of artificial neural network (ANN) to predict the failure pressure of single corrosion affected pipes subjected to internal pressure only. The development of the ANN model is based on the results of 71 sets of full-scale burst test data of pipe grades ranging from API 5L X42 to X100. The ANN model was developed using MATLAB’s Neural Network Toolbox with 1 hidden layer and 30 neurons. Before further deployment, the developed ANN model was compared against the training data and it produced a coefficient of determination of 0.99. The developed ANN model was further tested against a set of failure pressure data of API 5L X52 and X80 grade corroded pipes. Results revealed that the developed ANN model is able to predict the failure pressure with good margins of error (within 15%). Furthermore, the developed ANN model was used to determine the failure trends when corrosion defect length and depth were varied. Results from this failure trend analysis revealed that corrosion defect depth is the most significant parameter when it comes to corroded pipeline failure.

Author(s):  
К. Т. Чин ◽  
Т. Арумугам ◽  
С. Каруппанан ◽  
М. Овинис

Описываются разработка и применение искусственной нейронной сети (ИНС) для прогнозирования предельного давления трубопровода с точечным коррозионным дефектом, подверженного воздействию только внутреннего давления. Модель ИНС разработана на основе данных, полученных по результатам множественных полномасштабных испытаний на разрыв труб API 5L (класс от X42 до X100). Качество работы модели ИНС проверено в сравнении с данными для обучения, получен коэффициент детерминации R = 0,99. Модель дополнительно протестирована с учетом данных о предельном давлении корродированных труб API 5L X52 и X80. Установлено, что разработанная модель ИНС позволяет прогнозировать предельное давление с приемлемой погрешностью. С использованием данной модели проведена оценка влияния длины и глубины коррозионных дефектов на предельное давление. Выявлено, что глубина коррозии является более значимым фактором разрушения корродированного трубопровода. This paper describes the development and application of artificial neural network (ANN) to predict the failure pressure of single corrosion affected pipes subjected to internal pressure only. The development of the ANN model is based on the results of sets of full-scale burst test data of pipe grades ranging from API 5L X42 to X100. The ANN model was developed using MATLAB’s Neural Network Toolbox with 1 hidden layer and 30 neurons. Before further deployment, the developed ANN model was compared against the training data and it produced a coefficient of determination ( R ) of 0.99. The developed ANN model was further tested against a set of failure pressure data of API 5L X52 and X80 grade corroded pipes. Results revealed that the developed ANN model is able to predict the failure pressure with good margins of error. Furthermore, the developed ANN model was used to determine the failure trends when corrosion defect length and depth were varied. Results from this failure trend analysis revealed that corrosion defect depth is the most significant parameter when it comes to corroded pipeline failure.


2020 ◽  
pp. 1051-1062
Author(s):  
Zaher JabbarAttwan AL Zirej ◽  
Hassan Abdul Hadi

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).      An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.      The proposed artificial neural network method depends on obtaining the input data from drilling mud logging data and wireline logging data. The data then analyzes it to create an interconnection between the drilling variables and the rate of penetration.      The proposed ANN model consists of an input layer, hidden layer and outputs layer, while it applies the tangent function (TanH) as a learning and training algorithm in the hidden layer. Finally, the predicted values of ROP are compared with the measured values. The proposed ANN model is more efficient than the multiple regression analysis in predicting ROP. The obtained coefficient of determination (R2) values using the ANN technique are 0.93 and 0.91 for training and validation sets, respectively. This study presents a new model for predicting ROP values in comparison with other conventional drilling measurements.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2013 ◽  
Vol 69 (4) ◽  
pp. 768-774 ◽  
Author(s):  
André L. N. Mota ◽  
Osvaldo Chiavone-Filho ◽  
Syllos S. da Silva ◽  
Edson L. Foletto ◽  
José E. F. Moraes ◽  
...  

An artificial neural network (ANN) was implemented for modeling phenol mineralization in aqueous solution using the photo-Fenton process. The experiments were conducted in a photochemical multi-lamp reactor equipped with twelve fluorescent black light lamps (40 W each) irradiating UV light. A three-layer neural network was optimized in order to model the behavior of the process. The concentrations of ferrous ions and hydrogen peroxide, and the reaction time were introduced as inputs of the network and the efficiency of phenol mineralization was expressed in terms of dissolved organic carbon (DOC) as an output. Both concentrations of Fe2+ and H2O2 were shown to be significant parameters on the phenol mineralization process. The ANN model provided the best result through the application of six neurons in the hidden layer, resulting in a high determination coefficient. The ANN model was shown to be efficient in the simulation of phenol mineralization through the photo-Fenton process using a multi-lamp reactor.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


2012 ◽  
Vol 170-173 ◽  
pp. 1013-1016
Author(s):  
Fu Qiang Gao ◽  
Xiao Qiang Wang

Prediction of peak particle velocity (PPV) is very complicated due to the number of influencing parameters affecting seism wave propagation. In this paper, artificial neural network (ANN) is implemented to develop a model to predict PPV in a blasting operation. Based on the measured parameters of maximum explosive charge used per delay and distance between blast face to monitoring point, a three-layer ANN was found to be optimum with architecture 2-5-1. Through the analysis of coefficient of determination (CoD) and mean absolute error (MAE) between monitored and predicted values of PPV, it indicates that the forecast data by the ANN model is close to the actua1 values.


Author(s):  
Aseel Shakir I. Hilaiwah ◽  
Hanan Abed Alwally Abed Allah ◽  
Basim Akhudir Abbas ◽  
Tole Sutikno

<span>An extensive review of the artificial neural network (ANN) is presented in this paper. Previous studies review the artificial neural network (ANN) based on the approaches (algorithms) used or based on the types of the artificial neural network (ANN). The presented paper reviews the ANN based on the goal of the ANN (methods, and layers), which become the main objective of this paper. As a famous artificial intelligent model, ANN mimics the human nervous system in handling the information transmited by different nodes (also known as neurons) in this model. These nodes are stacked in layers and work collectively to bring about solution to complex problems. Numerous structures exist for ANN and each of these structures is designed to addressa a specific task. Basically, the ANN architecture is comprised of 3 different layers wherein the first layer rpresents the input layer that consist of several input nodes that represent the input parameterfor the model. The hidden layer is te second layer and consists of a hidden layer of neurons. The neurons in this layer are directly connected to the neurons in the output layer. The third layer is the output layer which is the models’ response layer. The output layer neurons have the activation functions for the calculation of the ANN final output. The connection between the nodes in the ANN model is mediated by synaptic weights. This paper is a comprehensive study of ANN models and their layers.</span>


Author(s):  
Madeline A. Walters ◽  
Zhaoyan Fan ◽  
Burak Sencer

Abstract This paper presents a data-based approach for modeling a plasma etch process by estimating etch rate based on controlled input parameters. This work seeks to use an Artificial Neural Network (ANN) model to correlate controlled tool parameters with etch rate and uniformity for a blanket 1100 Å WSiN thin film using Cl2 and BCl3 chemistry. Experimental data was collected using a Lam 9600 PTX plasma metal etch chamber in an industrial cleanroom. The WSiN film was deposited over 3000 Å TEOS to ensure adhesion, with an 8-inch bare silicon wafer as the base layer. Controlled tool parameters were radio frequency (RF) upper electrode power, RF lower electrode power, Cl2 gas flowrate, BCl3 gas flowrate, and chamber pressure. The full factorial design of experiment method was used to select the combinations of experimental configurations. The ANN model was validated using a subset of the training data.


Sign in / Sign up

Export Citation Format

Share Document