scholarly journals Depositional Sedimentary Facies, Stratigraphic Control, Paleoecological Constraints, and Paleogeographic Reconstruction of Late Permian Chhidru Formation (Western Salt Range, Pakistan)

2021 ◽  
Vol 9 (12) ◽  
pp. 1372
Author(s):  
Syed Kamran Ali ◽  
Hammad Tariq Janjuhah ◽  
Syed Muzyan Shahzad ◽  
George Kontakiotis ◽  
Muhammad Hussain Saleem ◽  
...  

The Upper Indus Basin, in Pakistan’s western Salt Range, is home to the Zaluch Gorge. The sedimentary rocks found in this Gorge, belonging to the Chhidru Formation, were studied in terms of sedimentology and stratigraphy, and provide new insights into the basin paleogeographic evolution from the Precambrian to the Jurassic period. Facies analysis in the Chhidru Formation deposits allowed the recognition of three lithofacies (the limestone facies—CF1, the limestone with clay interbeds facies—CF2, and the sandy limestone facies—CF3) with five microfacies types (mudstone biomicrite—MF-1, wackestone-biomicrite—MF-2, wackestone-biosparite—MF-3, pack-stone-biomicrite—MF-4, and packstone-biosparite—MF-5), as well as their depositional characteristics. The identified carbonate and siliciclastic formations display various facies in a shallow marine environment, with different lithologies, sedimentary features, and energy conditions. It is thought that the depositional characteristics of these microfacies are closer to those of the middle to outer shelf. Because of the progressively coarsening outcrop sequence, this formation seems to be at the very top of the high stand system tract (HST). A modified dynamic depositional model of the Chhidru Formation is further built using outcrop data, facies information, and stratigraphy. According to this concept, the formation was deposited in the middle to inner shelf area of the shallow marine environment, during the Late-Permian period. The Permo-Triassic Boundary (PTB), which is the end of the type-1 series, is marked by this formation’s top.

2015 ◽  
Vol 1 (2) ◽  
Author(s):  
Sugeng Sapto Surjono ◽  
Mohd Shafeea Leman ◽  
Kamal Roslan Mohamed ◽  
Che Aziz Ali

Conglomeratic rocks in East Johor are found in the separately three formations that are the Murau, Tanjung Leman and Linggiu Formations. The Murau Formation is characterized by cobble to boulder grained breccia with very angular to angular and disorganized clasts. It was deposited by fan-delta system in the sub-aerial to shallow marine environment. The Tanjung Leman Formation consists of pebble to cobble grained conglomerate with rounded to subrounded and organized clasts. It was deposited by braided river system in the sub-aerial environment. Both formations outcropped in eastern coastal of Johor. The rudaceous rocks of the Linggiu Formation consist of pebble to cobble-sized clasts with sub angular and disorganized texture. It present as subordinate rocks within sandstone dominant in the central part of East Johor and was deposited by debris flows in the shallow marine environment. All these rudaceous rocks were interpreted as Palaeozoic in age ranging from Late Carboniferous to Late Permian. Those rudaceous rocks indicated that since Late Carboniferous, palaeogeography of East Johor was a continent with subaerial to shallow marine depositional environment. Keywords: Conglomerate, Palaeozoic, East Johor, subaerial, shallow marine.


2013 ◽  
Vol 15 ◽  
pp. 63-68
Author(s):  
Sujan Devkota ◽  
Lalu Prasad Paudel

The Bhainskati Formation of the Tansen Group in the Palpa area is known for hematite iron ore deposit for long time. A prominent band of hematite of about 1-2 m thickness and extending >5 km was identified in the upper part of the Bhainskati Formation in the present study. The band is repeated three times in the area by folding and faulting. Petrographic study shows that it is oolitic ironstone of sedimentary origin. Main minerals in the band are hematite, goethite, quartz, calcite, siderite and albite. Hematite content varies considerably among samples and occurs mainly as oolite and cement. The Bhainskati ironstone with its ferrous mineral assemblage and well-rounded texture of the ooids suggests shallow marine environment (prodeltaic to estuarine) with reduced clastic input. DOI: http://dx.doi.org/10.3126/bdg.v15i0.7418 Bulletin of the Department of Geology, Vol. 15, 2012, pp. 63-68


1981 ◽  
Vol 118 (3) ◽  
pp. 281-288 ◽  
Author(s):  
S. Olaussen

SummaryThe discovery of marine fossils in the Upper Palaeozoic of the Oslo Region suggests a previously unknown marine transgression of probable middle Carboniferous age. The fossiliferous sequence in the Oslo district was probably deposited in a very shallow marine environment as indicated by its fauna, ooids and the strong micritization of the fossils. The discovery of this sequence is consistent with the rift model for the Oslo Rift Zone, and suggests a connection with the Variscan Ocean.


2017 ◽  
Vol 23 (10) ◽  
pp. 4346-4353 ◽  
Author(s):  
Danna Titelboim ◽  
Aleksey Sadekov ◽  
Ahuva Almogi-Labin ◽  
Barak Herut ◽  
Michal Kucera ◽  
...  

2010 ◽  
Vol 148 (2) ◽  
pp. 237-249 ◽  
Author(s):  
ALEXANDRA HOUSSAYE ◽  
NATHALIE BARDET ◽  
JEAN-CLAUDE RAGE ◽  
XABIER PEREDA SUBERBIOLA ◽  
BAÂDI BOUYA ◽  
...  

AbstractThe discovery of new specimens of Pachyvaranus crassispondylus Arambourg, 1952 from the Maastrichtian phosphates of Morocco and Syria enables us to (1) redescribe in detail this poorly known varanoid lizard, (2) provide a more detailed diagnosis and (3) re-evaluate the systematic affinities of this taxon within squamates. The latter is placed in Pachyvaranidae nov., considered a new unranked clade of non-pythonomorph Varanoidea. The intense pachyosteosclerosis observed in the vertebrae and ribs suggests a primarily aquatic mode of life for Pachyvaranus. This is in accordance with the sedimentological context (shallow marine environment). As for its palaeobiogeographical distribution, Pachyvaranus is a component of the marine reptile assemblages from the southern margin of the Mediterranean Tethys, around palaeolatitudes 20° N. The osteoderms previously referred to this taxon by Arambourg are reanalysed and assigned to a teleost fish.


Sign in / Sign up

Export Citation Format

Share Document