scholarly journals A Novel Kindred with Familial Gastrointestinal Stromal Tumors Caused by a Rare KIT Germline Mutation (N655K): Clinico-Pathological Presentation and TKI Sensitivity

2020 ◽  
Vol 10 (4) ◽  
pp. 234
Author(s):  
Mara Fornasarig ◽  
Daniela Gasparotto ◽  
Luisa Foltran ◽  
Michele Campigotto ◽  
Sara Lombardi ◽  
...  

Gastrointestinal stromal tumors (GISTs), the most common mesenchymal tumors of the gastrointestinal tract, are characterized by activating mutations in KIT or PDGFRA genes. The vast majority of GISTs are sporadic, but rare hereditary forms have been reported, often featuring multifocality and younger age of onset. We here report the identification of a novel kindred affected by familial GIST caused by a KIT germline mutation in exon 13 (N655K). No family affected by hereditary GIST due to this KIT variant has been reported in literature so far. We were able to track the mutation in three members of the family (proband, mother, and second-degree cousin), all affected by multiple GISTs. Due to its rarity, the N655K variant is poorly characterized. We conducted in vitro drug sensitivity assays that indicated that most tyrosine kinase inhibitors (TKIs) currently included in the therapeutic armamentarium for GISTs have a limited inhibitory activity toward this mutation. However, when compared to a classical imatinib-resistant KIT mutation (T670I), N655K was slightly more sensitive to imatinib, and encouraging responses were observed with last-generation TKIs.


2011 ◽  
pp. 69-79
Author(s):  
Alessandro Comandone ◽  
Elisa Berno ◽  
Simona Chiadò Cutin ◽  
Antonella Boglione

Gastrointestinal stromal tumors (GISTs) are the commonest mesenchymal tumors of the gastroenteric tract, and are generally believed to originate from the neoplastic transformation of the interstitial cells of Cajal, the pacemaker structures of the stomach and intestine. Exon and genetic mutations (point/deletions) are fundamental for the development of GISTs: the constitutional characteristic of this neoplasm is the presence of the cell surface Kit receptor. Kit is the product of the proto-oncogene cKit, situated in chromosome 4. Ninety-eight percent of GISTs express mutated isoforms of Kit or of PDGFRA (Platelet growth factor receptor a). Kit mutation is the basic condition for autophosphorylation of tyrosine kinase residues in proteins. Autophosphorylation initiates pathogenetic processes in Cajal cells, toward a neoplastic transformation. Imatinib mesilate and, more recently, sunitinib are tyrosine kinase inhibitors, specific antagonists for Kit and PDGFRA, with good activity against GISTs. Most molecular and clinical data currently available concern imatinib. Exon mutations are strategic as prognostic and as predictive factors. In recent years, much evidence suggests that survival, response to therapy and resistance to imatinib are related to different mutations. In the near future, GIST patients will receive treatment differentiated by expressed Kit and PDGFRA mutations, thus truly individualized therapy.



2011 ◽  
Vol 2 (2) ◽  
pp. 69
Author(s):  
Alessandro Comandone ◽  
Elisa Berno ◽  
Simona Chiadò Cutin ◽  
Antonella Boglione

Gastrointestinal stromal tumors (GISTs) are the commonest mesenchymal tumors of the gastroenteric tract, and are generally believed to originate from the neoplastic transformation of the interstitial cells of Cajal, the pacemaker structures of the stomach and intestine. Exon and genetic mutations (point/deletions) are fundamental for the development of GISTs: the constitutional characteristic of this neoplasm is the presence of the cell surface Kit receptor. Kit is the product of the proto-oncogene cKit, situated in chromosome 4. Ninety-eight percent of GISTs express mutated isoforms of Kit or of PDGFRA (Platelet growth factor receptor a). Kit mutation is the basic condition for autophosphorylation of tyrosine kinase residues in proteins. Autophosphorylation initiates pathogenetic processes in Cajal cells, toward a neoplastic transformation. Imatinib mesilate and, more recently, sunitinib are tyrosine kinase inhibitors, specific antagonists for Kit and PDGFRA, with good activity against GISTs. Most molecular and clinical data currently available concern imatinib. Exon mutations are strategic as prognostic and as predictive factors. In recent years, much evidence suggests that survival, response to therapy and resistance to imatinib are related to different mutations. In the near future, GIST patients will receive treatment differentiated by expressed Kit and PDGFRA mutations, thus truly individualized therapy.



Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1741-1744 ◽  
Author(s):  
Yongsheng Ma ◽  
Shan Zeng ◽  
Dean D. Metcalfe ◽  
Cem Akin ◽  
Sasa Dimitrijevic ◽  
...  

Mutations of c-KIT causing spontaneous activation of the KIT receptor kinase are associated with sporadic adult human mastocytosis (SAHM) and with human gastrointestinal stromal tumors. We have classified KIT-activating mutations as either “enzymatic site” type (EST) mutations, affecting the structure of the catalytic portion of the kinase, or as “regulatory” type (RT) mutations, affecting regulation of an otherwise normal catalytic site. Using COS cells expressing wild-type or mutant KIT, 2 compounds, STI571 and SU9529, inhibited wild-type and RT mutant KIT at 0.1 to 1 μM but did not significantly inhibit the Asp816Val EST mutant associated with SAHM, even at 10 μM. Using 2 subclones of the HMC1 mast cell line, which both express KIT with an identical RT mutation but which differ in that one also expresses the Asp816Val EST mutation, both compounds inhibited the RT mutant KIT, thereby suppressing proliferation and producing apoptosis in the RT mutant-only cell line. Neither compound suppressed activation of Asp816Val EST mutant KIT, and neither produced apoptosis or significantly suppressed proliferation of the cell line expressing the Asp816Val mutation. These studies suggest that currently available KIT inhibitors may be useful in treating neoplastic cells expressing KIT activated by its natural ligand or by RT activating mutations such as gastrointestinal stromal tumors but that neither compound is likely to be effective against SAHM. Furthermore, these results help establish a general paradigm whereby classification of mutations affecting oncogenic enzymes as RT or EST may be useful in predicting tumor sensitivity or resistance to inhibitory drugs.



Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 705
Author(s):  
Alessandro Rizzo ◽  
Maria Abbondanza Pantaleo ◽  
Annalisa Astolfi ◽  
Valentina Indio ◽  
Margherita Nannini

The majority of gastrointestinal stromal tumors (GIST) carry a sensitive primary KIT mutation, but approximately 5% to 10% of cases harbor activating mutations of platelet-derived growth factor receptor (PDGFRA), mainly involving the A-loop encoded by exon 18 (~5%), or more rarely the JM domain, encoded by exon 12 (~1%), or the ATP binding domain encoded by exon 14 (<1%). The most frequent mutation is the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V) in exon 18, widely recognized as D842V. This mutation, as well known, provides primary resistance to imatinib and sunitinib. Thus, until few years ago, no active drugs were available for this subtype of GIST. Conversely, recent years have witnessed the development of a new specific inhibitor—avapritinib—that has been studied in in vitro and clinical setting with promising results. In light of this primary resistance to conventional therapies, the biological background of D842V-mutant GIST has been deeply investigated to better understand what features characterize this peculiar subset of GIST, and some promising insights have emerged. Hereinafter, we present a comprehensive overview on the clinical features and the molecular background of this rare subtype of GIST.



2021 ◽  
Vol 22 (2) ◽  
pp. 493
Author(s):  
Christos Vallilas ◽  
Panagiotis Sarantis ◽  
Anastasios Kyriazoglou ◽  
Evangelos Koustas ◽  
Stamatios Theocharis ◽  
...  

Gastrointestinal stromal tumors (GISTs) are the most common types of malignant mesenchymal tumors in the gastrointestinal tract, with an estimated incidence of 1.5/100.000 per year and 1–2% of gastrointestinal neoplasms. About 75–80% of patients have mutations in the KIT gene in exons 9, 11, 13, 14, 17, and 5–10% of patients have mutations in the platelet-derived growth factor receptor a (PDGFRA) gene in exons 12, 14, 18. Moreover, 10–15% of patients have no mutations and are classified as wild type GIST. The treatment for metastatic or unresectable GISTs includes imatinib, sunitinib, and regorafenib. So far, GIST therapies have raised great expectations and offered patients a better quality of life, but increased pharmacological resistance to tyrosine kinase inhibitors is often observed. New treatment options have emerged, with ripretinib, avapritinib, and cabozantinib getting approvals for these tumors. Nowadays, immune checkpoint inhibitors form a new landscape in cancer therapeutics and have already shown remarkable responses in various tumors. Studies in melanoma, non-small-cell lung cancer, and renal cell carcinoma are very encouraging as these inhibitors have increased survival rates. The purpose of this review is to present alternative approaches for the treatment of the GIST patients, such as combinations of immunotherapy and novel inhibitors with traditional therapies (tyrosine kinase inhibitors).



2019 ◽  
Vol 30 (5) ◽  
pp. 475-484
Author(s):  
Sergei Boichuk ◽  
Aigul Galembikova ◽  
Pavel Dunaev ◽  
Ekaterina Micheeva ◽  
Maria Novikova ◽  
...  


2008 ◽  
Vol 23 (2) ◽  
pp. 96-110 ◽  
Author(s):  
R. Sarmiento ◽  
P. Bonginelli ◽  
F. Cacciamani ◽  
F. Salerno ◽  
G. Gasparini

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs represent a distinct category of tumors characterized by oncogenic mutations of the KIT receptor tyrosine kinase in a majority of patients. KIT is useful not only for the diagnosis but also for targeted therapy of this disease. Imatinib, a tyrosine kinase inhibitor, is widely used in advanced and metastatic GISTs. This agent revolutionized the treatment strategy of advanced disease and is being tested in the neoadjuvant and adjuvant settings with encouraging results. New therapeutic agents like sunitinib have now been approved, enriching the treatment scenario for imatinib-resistant GISTs. The present review reports on the peculiar characteristics of this disease through its biology and molecular patterns, focusing on the predictive value of KIT mutations and their correlation with clinical outcome as well as on the activity of and resistance to approved targeted drugs.



2019 ◽  
Vol 233-234 ◽  
pp. 1-6 ◽  
Author(s):  
Alison L. Halpern ◽  
Robert J. Torphy ◽  
Martin D. McCarter ◽  
Cosimo G. Sciotto ◽  
L. Michael Glode ◽  
...  


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3158
Author(s):  
Toshirou Nishida ◽  
Shigetaka Yoshinaga ◽  
Tsuyoshi Takahashi ◽  
Yoichi Naito

Gastrointestinal stromal tumors (GISTs) are the most frequent malignant mesenchymal tumors in the gastrointestinal tract. The clinical incidence of GISTs is estimated 10/million/year; however, the true incidence is complicated by frequent findings of tiny GISTs, of which the natural history is unknown. The initial work-up with endoscopy and endoscopic ultrasonography plays important roles in the differential diagnosis of GISTs. Surgery is the only modality for the permanent cure of localized GISTs. In terms of safety and prognostic outcomes, laparoscopy is similar to laparotomy for GIST treatment, including tumors larger than 5 cm. GIST progression is driven by mutations in KIT or PDGFRA or by other rare gene alterations, all of which are mutually exclusive. Tyrosine kinase inhibitors (TKIs) are the standard therapy for metastatic/recurrent GISTs. Molecular alterations are the most reliable biomarkers for TKIs and for other drugs, such as NTRK inhibitors. The pathological and genetic diagnosis prior to treatment has been challenging; however, a newly developed endoscopic device may be useful for diagnosis. In the era of precision medicine, cancer genome profiling by targeted gene panel analysis may enable potential targeted therapy even for GISTs without KIT or PDGFRA mutations.



Sign in / Sign up

Export Citation Format

Share Document