scholarly journals Quantitative Analysis of Drought Management Strategies across Ethnographically-Researched African Societies: A Pilot Study

Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1062
Author(s):  
Stefano Biagetti ◽  
Debora Zurro ◽  
Jonas Alcaina-Mateos ◽  
Eugenio Bortolini ◽  
Marco Madella

In this paper, we present a pilot study aimed at investigating the impact of subsistence strategies and environmental pressure on the distribution of ethnographically documented strategies to cope with drought and its effects across 35 current societies in Africa. We use freely accessible ethnographic databases to retrieve data on how a number of African societies deal with the circumstances of drought, and ascertain the impact of geography on their distribution in order to measure possible relationships between them, a set of subsistence choices, and proxies of environmental constraints. We use Canonical Correspondence Analysis to explore the emerging patterns and find that subsistence strategy strongly impacts the choice of drought management strategies, especially if considered with a proxy of local environmental condition. Spatial proximity and aridity per se have only marginal impact, highlighting other relevant processes of cultural transmission that at least partly transcend (a) the intensity of human interaction over geographic gradients and (b) local adaptation primarily dependent on water availability. This study supports the wide applicability of quantitative and replicable methods to cross-cultural evidence on a variety of adaptive strategies and uses ethnographic data to propose new hypotheses that can inform future archaeological research by showing recurrent and non-case-specific choices highlighting resilient practices and adaptive behaviour in Africa.

2021 ◽  
Vol 21 (10) ◽  
pp. 3113-3139
Author(s):  
Doris E. Wendt ◽  
John P. Bloomfield ◽  
Anne F. Van Loon ◽  
Margaret Garcia ◽  
Benedikt Heudorfer ◽  
...  

Abstract. Managing water–human systems during water shortages or droughts is key to avoid the overexploitation of water resources and, in particular, groundwater. Groundwater is a crucial water resource during droughts as it sustains both environmental and anthropogenic water demand. Drought management is often guided by drought policies, to avoid crisis management, and actively introduced management strategies. However, the impact of drought management strategies on hydrological droughts is rarely assessed. In this study, we present a newly developed socio-hydrological model, simulating the relation between water availability and managed water use over 3 decades. Thereby, we aim to assess the impact of drought policies on both baseflow and groundwater droughts. We tested this model in an idealised virtual catchment based on climate data, water resource management practices and drought policies in England. The model includes surface water storage (reservoir), groundwater storage for a range of hydrogeological conditions and optional imported surface water or groundwater. These modelled water sources can all be used to satisfy anthropogenic and environmental water demand. We tested the following four aspects of drought management strategies: (1) increased water supply, (2) restricted water demand, (3) conjunctive water use and (4) maintained environmental flow requirements by restricting groundwater abstractions. These four strategies were evaluated in separate and combined scenarios. Results show mitigated droughts for both baseflow and groundwater droughts in scenarios applying conjunctive use, particularly in systems with small groundwater storage. In systems with large groundwater storage, maintaining environmental flows reduces hydrological droughts most. Scenarios increasing water supply or restricting water demand have an opposing effect on hydrological droughts, although these scenarios are in balance when combined at the same time. Most combined scenarios reduce the severity and occurrence of hydrological droughts, given an incremental dependency on imported water that satisfies up to a third of the total anthropogenic water demand. The necessity for importing water shows the considerable pressure on water resources, and the delicate balance of water–human systems during droughts calls for short-term and long-term sustainability targets within drought policies.


2021 ◽  
Author(s):  
Doris E. Wendt ◽  
John P. Bloomfield ◽  
Anne F. Van Loon ◽  
Margaret Garcia ◽  
Benedikt Heudorfer ◽  
...  

Abstract. Managing water-human systems in times of water shortage and droughts is key to avoid overexploitation of water resources, particularly for groundwater, which is a crucial water resource during droughts sustaining both environmental and anthropogenic water demand. Drought management is often guided by drought policies to avoid crisis management and to actively introduce management strategies during droughts. However, the impact of drought management strategies on hydrological droughts is rarely assessed. In this study, we present a newly developed socio-hydrological model, simulating feedbacks between water availability and managed water use over three decades. Thereby, we aim to assess the impact of drought policies on both surface water and groundwater droughts. We tested this model in an idealised catchment based on climate data, water resource management practices, and drought policies in England. The model includes surface water storage (reservoir), groundwater storage for a range of hydrogeological conditions and optional imported surface water or groundwater. These modelled water sources can all be used to satisfy anthropogenic and environmental water demand. We tested four aspects of drought management strategies: 1) increased water supply, 2) restricted water demand, 3) conjunctive water use, and 4) maintained environmental flow requirements by restricting groundwater abstractions. These four strategies were evaluated in separate and combined scenarios. Results show mitigated droughts for both streamflow and groundwater droughts in scenarios applying conjunctive use, particularly in low groundwater storage systems. In high groundwater storage systems, maintaining environmental flows reduces hydrological droughts most. Scenarios increasing or restricting water demand have an opposing effect on droughts, although these scenarios are in balance when combined at the same time. Most combined scenarios reduce the severity and occurrence of hydrological droughts given an incremental dependency on imported water that satisfies up to a third of the total anthropogenic water demand. The necessity for importing water shows the considerable pressure on water resources and the delicate balance of water-human systems during droughts that calls for short-term and long-term sustainability targets within drought policies.


2007 ◽  
Author(s):  
Danielle V. Shelov ◽  
Sonia Suchday ◽  
Jennifer P. Friedberg
Keyword(s):  

Biomimetics ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Adam Bignold ◽  
Francisco Cruz ◽  
Richard Dazeley ◽  
Peter Vamplew ◽  
Cameron Foale

Interactive reinforcement learning methods utilise an external information source to evaluate decisions and accelerate learning. Previous work has shown that human advice could significantly improve learning agents’ performance. When evaluating reinforcement learning algorithms, it is common to repeat experiments as parameters are altered or to gain a sufficient sample size. In this regard, to require human interaction every time an experiment is restarted is undesirable, particularly when the expense in doing so can be considerable. Additionally, reusing the same people for the experiment introduces bias, as they will learn the behaviour of the agent and the dynamics of the environment. This paper presents a methodology for evaluating interactive reinforcement learning agents by employing simulated users. Simulated users allow human knowledge, bias, and interaction to be simulated. The use of simulated users allows the development and testing of reinforcement learning agents, and can provide indicative results of agent performance under defined human constraints. While simulated users are no replacement for actual humans, they do offer an affordable and fast alternative for evaluative assisted agents. We introduce a method for performing a preliminary evaluation utilising simulated users to show how performance changes depending on the type of user assisting the agent. Moreover, we describe how human interaction may be simulated, and present an experiment illustrating the applicability of simulating users in evaluating agent performance when assisted by different types of trainers. Experimental results show that the use of this methodology allows for greater insight into the performance of interactive reinforcement learning agents when advised by different users. The use of simulated users with varying characteristics allows for evaluation of the impact of those characteristics on the behaviour of the learning agent.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 907
Author(s):  
Monika Dziuba ◽  
Vickie J. Ruggiero ◽  
Catherine Wilson ◽  
Paul C. Bartlett ◽  
Paul M. Coussens

Bovine leukemia virus (BLV) is a retroviral infection that disrupts the immune function of infected animals. It is widespread among U.S. dairy cattle. In this pilot study, the average total IgA and IgM concentrations in milk, saliva, and serum samples from BLV ELISA-positive (ELISA+) dairy cows were compared against samples from BLV ELISA-negative (ELISA−) cows using the Kruskal–Wallis test (with ties). The results from ELISA+ cows were also stratified by lymphocyte count (LC) and proviral load (PVL). In milk and saliva from ELISA+ cows, the average total IgA and IgM concentrations were decreased compared to ELISA− cows, although this was only statistically significant for saliva IgM in cows with low PVL (p = 0.0424). Numerically, the average total IgA concentrations were 33.6% lower in milk and 23.7% lower in saliva, and the average total IgM concentrations were 42.4% lower in milk and 15.5% lower in saliva. No significant differences were observed in the total serum IgA concentrations, regardless of PVL and LC. The total serum IgM from ELISA+ cows was significantly decreased (p = 0.0223), with the largest decreases occurring in the highest PVL and LC subgroups. This pilot study is a first step in investigating the impact of BLV on mucosal immunity and will require further exploration in each of the various stages of disease progression.


Sign in / Sign up

Export Citation Format

Share Document