scholarly journals Dietary Administration of Novel Multistrain Probiotics from Healthy Grouper Intestines Promotes the Intestinal Immune Response against NNV Infection

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1053
Author(s):  
Joan Tang Xiao Joe ◽  
Henry Tan Shi Sung ◽  
Jen-Leih Wu ◽  
Yu-Shen Lai ◽  
Ming-Wei Lu

Epinephelus lanceolatus (giant grouper) is a high-value cultured species in the Asia-Pacific region. However, nervous necrosis virus (NNV) is an infectious viral disease that affects over 120 species of marine cultured species and causes high mortality, ranging from 90–100% in the grouper industry. Probiotics isolated from the intestines of healthy individuals have provided insight into novel approaches involved in the defense against viral pathogens. In this study, we isolated three strains of bacteria as candidate probiotics from healthy grouper intestines and a 28-day feeding trial was performed. At day 21, the nervous necrosis virus (NNV) challenge test was conducted for 7 days to evaluate the antiviral effect of candidate probiotics. The results showed that candidate probiotics could improve growth conditions, such as weight gain (WG) and specific growth rate (SGR), and increase the utilization of feed. Furthermore, the candidate probiotic mixture had the ability to protect against NNV, which could decrease the mortality rate by 100% in giant grouper after NNV challenge. Subsequently, we analyzed the mechanism of the candidate probiotic mixture’s defense against NNV. A volcano plot revealed 203 (control vs. NNV), 126 (NNV vs. probiotics–NNV), and 5 (control vs. probiotics–NNV) differentially expressed transcripts in intestinal tissue. Moreover, principal components analysis (PCA) and cluster analysis heatmap showed large differences among the three groups. Functional pathway analysis showed that the candidate probiotic mixture could induce the innate and adaptive immunity of the host to defend against virus pathogens. Therefore, we hope that potential candidate probiotics could be successfully applied to the industry to achieve sustainable aquaculture.

Aquaculture ◽  
2021 ◽  
pp. 736846
Author(s):  
Venkata Satyanarayana Nallala ◽  
M. Makesh ◽  
K. Radhika ◽  
T. Sathish Kumar ◽  
P. Raja ◽  
...  

2018 ◽  
Vol 72 ◽  
pp. 14-22 ◽  
Author(s):  
Youhua Huang ◽  
Jingcheng Zhang ◽  
Zhengliang Ouyang ◽  
Jiaxin Liu ◽  
Ya Zhang ◽  
...  

2021 ◽  
Vol 16 ◽  
Author(s):  
Soudabeh Kavousi Pour ◽  
Shiva Mohammadi ◽  
Ebrahim Eftekhar ◽  
Sajad Jalili ◽  
Elham Arabizadeh ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) pandemic is a contagious disease originating from severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Previous experimental studies indicate that viral miRNAs (vMirs) have essential functions in pathogen-host interaction, immune escape, host cell death, and tumorigenesis during viral infection. MiRNAs are small, single-stranded RNAs that exist in viruses as well as in animals. Thus, these molecules can play a pivotal role in viral disease pathogenesis. Objective: Since no approved drugs or vaccines currently exist for SARS-CoV2 and its pathogenic mechanism is unknown, we explored and proposed viral microRNAs (vmiRNAs) platforms as potential antiviral therapeutic agents against its SARS-CoV2. Therefore, the development of antiviral drugs to target vmiRNAs may result in down-regulation of viral virulence genes expression and suppression of viral proliferation. Methods: In this study, to attain insight into the potential role of SARS-CoV2 derived miRNAs in the viral infection background, we used a set of computational methods to scan the SARS-CoV2 genome that finally led to computationally predicted 13 potential candidate viral microRNAs. Furthermore, we expected the potential genes in a human host that were the target of these candidate vmiRNAs by applying mirPath software. Results: Our study proposed a theory indicating that these predicted viral miRNAs might have a plausible role in altering human target gene expression, mainly contributing to the viral infectious state, inflammation, and immune system escape. This vmiRNAs maight have therapeutic trends as antiviral agents against Covid-19 infection. Conclusion: These findings offer a reference idea for a supplementary study on miRNA identification as a drug target and the necessity to increase understanding of SARS-CoV2 genome structure for better combat against the virus.


Aquaculture ◽  
2021 ◽  
pp. 737654
Author(s):  
Song Zhu ◽  
Bo Miao ◽  
Yu-Zhou Zhang ◽  
Wei-Wei Zeng ◽  
De-Shou Wang ◽  
...  

Author(s):  
Arunachalam Ramaiah ◽  
Vaithilingaraja Arumugaswami

ABSTRACTNovel Coronavirus (nCoV) outbreak in the city of Wuhan, China during December 2019, has now spread to various countries across the globe triggering a heightened containment effort. This human pathogen is a member of betacoronavirus genus carrying 30 kilobase of single positive-sense RNA genome. Understanding the evolution, zoonotic transmission, and source of this novel virus would help accelerating containment and prevention efforts. The present study reported detailed analysis of 2019-nCoV genome evolution and potential candidate peptides for vaccine development. This nCoV genotype might have been evolved from a bat-CoV by accumulating non-synonymous mutations, indels, and recombination events. Structural proteins Spike (S), and Membrane (M) had extensive mutational changes, whereas Envelope (E) and Nucleocapsid (N) proteins were very conserved suggesting differential selection pressures exerted on 2019-nCoV during evolution. Interestingly, 2019-nCoV Spike protein contains a 39 nucleotide sequence insertion relative to SARS-like bat-SL-CoVZC45/2017. Furthermore, we identified eight high binding affinity (HBA) CD4 T-cell epitopes in the S, E, M and N proteins, which can be commonly recognized by HLA-DR alleles of Asia and Asia-Pacific Region population. These immunodominant epitopes can be incorporated in universal subunit CoV vaccine. Diverse HLA types and variations in the epitope binding affinity may contribute to the wide range of immunopathological outcomes of circulating virus in humans. Our findings emphasize the requirement for continuous surveillance of CoV strains in live animal markets to better understand the viral adaptation to human host and to develop practical solutions to prevent the emergence of novel pathogenic CoV strains.


2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Nereida Jiménez de Oya ◽  
Ana-Belén Blázquez ◽  
Josefina Casas ◽  
Juan-Carlos Saiz ◽  
Miguel A. Martín-Acebes

ABSTRACT Mosquito-borne flaviviruses are a group of RNA viruses that constitute global threats for human and animal health. Replication of these pathogens is strictly dependent on cellular lipid metabolism. We have evaluated the effect of the pharmacological activation of AMP-activated protein kinase (AMPK), a master regulator of lipid metabolism, on the infection of three medically relevant flaviviruses, namely, West Nile virus (WNV), Zika virus (ZIKV), and dengue virus (DENV). WNV is responsible for recurrent outbreaks of meningitis and encephalitis, affecting humans and horses worldwide. ZIKV has caused a recent pandemic associated with birth defects (microcephaly), reproductive disorders, and severe neurological complications (Guillain-Barré syndrome). DENV is the etiological agent of the most prevalent mosquito-borne viral disease, which can induce a potentially lethal complication called severe dengue. Our results showed, for the first time, that activation of AMPK using the specific small molecule activator PF-06409577 reduced WNV, ZIKV, and DENV infection. This antiviral effect was associated with an impairment of viral replication due to the modulation of host cell lipid metabolism exerted by the compound. These results support that the pharmacological activation of AMPK, which currently constitutes an important pharmacological target for human diseases, could also provide a feasible approach for broad-spectrum host-directed antiviral discovery.


Sign in / Sign up

Export Citation Format

Share Document