scholarly journals Scheduling Approach for the Simulation of a Sustainable Resource Supply Chain

Logistics ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 12
Author(s):  
Henning Strubelt ◽  
Sebastian Trojahn ◽  
Sebastian Lang ◽  
Abdulrahman Nahhas

The general goal of waste management is to conserve resources and avoid negative environmental impacts. This paper deals with the optimization of logistics processes at an underground waste storage site by means of solving scheduling issues and reducing setup times, with the help of a simulation model. Specific to underground waste storage is the fact that it is often only a side business to actual mining. With limited capacity and resources, all legal requirements must be met, while the business should still be profitable. This paper discusses the improvement of a logistical system’s performance using machine scheduling approaches with the support of a plant simulation model. The process sequence is determined by means of a priority index. Genetic algorithms are then applied to improve the priority index to further increase performance. Results of the simulation model show that the performance of the logistics system can be increased by up to 400 percent, ensuring adequate system performance for current as well as future demand without changes to the system’s capacities and resources.

2019 ◽  
Vol 263 ◽  
pp. 01010
Author(s):  
Stefan Jovčić ◽  
Petr Průša ◽  
Gabriel Fedorko ◽  
Alena Večeřová ◽  
Momčilo Dobrodolac

This research paper deals with the creation of simulation model of an automated logistic system in Tecnomatix Plant Simulation. The crucial element of the theoretical part of the paper is the factual basis for automated logistic systems whose purpose is their practical use, the process of creation or classification. An important part of this section is simulation and their models, especially discrete. Realization of simulations was not possible without software tool named Technomatix plant simulation. The practical part is then focused on building a functional model suitable for experimentation.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2019 ◽  
Vol 9 (1) ◽  
pp. 600-605 ◽  
Author(s):  
Gabriel Fedorko ◽  
Martin Vasil ◽  
Michaela Bartosova

AbstractIntra-plant transport systems within their operation directly impact on the performance of production systems. For their effective operation, it is, therefore, necessary to realize evaluation of operational performance and effectivity. For the realization of this type of evaluation, in addition to a wide range of sensors that can be difficult for installation and operation, we can also use indirect methods that are equally able to provide reliable operational characteristics. Indirect analytical methods are presented above all by the approach which is based on the use of simulation methods. The method of computer simulation provides a wide range of options for the evaluation of efficiency and performance. The paper describes the use of a simulation model created in the program Tecnomatix Plant Simulation for analyzing the supply of production workplaces within the MilkRun system.


2018 ◽  
Vol 203 ◽  
pp. 03005
Author(s):  
Idzham Fauzi Mohd Ariff ◽  
Mardhiyah Bakir

A dynamic simulation model was developed, calibrated and validated for a petrochemical plant in Terengganu, Malaysia. Calibration and validation of the model was conducted based on plant monitoring data spanning 3 years resulting in a model accuracy (RMSD) for effluent chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and total suspended solids (TSS) of ±11.7 mg/L, ±0.52 mg/L and ± 3.27 mg/L respectively. The simulation model has since been used for troubleshooting during plant upsets, planning of plant turnarounds and developing upgrade options. A case study is presented where the simulation model was used to assist in troubleshooting and rectification of a plant upset where ingress of a surfactant compound resulted in high effluent TSS and COD. The model was successfully used in the incident troubleshooting activities and provided critical insights that assisted the plant operators to quickly respond and bring back the system to normal, stable condition.


Health ◽  
2010 ◽  
Vol 02 (03) ◽  
pp. 177-187
Author(s):  
Zygmunt Kowalski ◽  
Adam Kozak ◽  
Marcin Banach ◽  
Agnieszka Makara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document