scholarly journals Size-Dependent Phase Transformation during Gas Atomization Process of Cu–Sn Alloy Powders

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 245 ◽  
Author(s):  
Hao Pan ◽  
Hongjun Ji ◽  
Meng Liang ◽  
Junbo Zhou ◽  
Mingyu Li

For binary element atomization, it is essential to investigate the phase transformation from liquid to solid as a functions of the droplet sizes, as well as the reaction competitiveness, during gas atomizing solidification of their nuclei. In the present work, a series of phase transformations of undercooled Cu (60.9 wt.%)/Sn droplets were analyzed when atomized by pressure gas. The results indicated that the microstructures of the obtained powders and their morphologies were highly relevant to the droplet size. According to the phase characteristics analyzed by the microstructural observations in combination with the transient nucleation theory, powders with sizes from 10 to 100 μm were divided into three categories, exhibiting lotus-leaf, island, and stripe morphologies. The competitive formation of Cu6Sn5 or Cu3Sn was also controlled by the droplet sizes, and a diameter of approximately 45 μm was identified as the threshold size. After heat treatment at 300 °C for 4 h, the powders consisted of a single η’ Cu6Sn5 phase. The obtained Cu6Sn5 phase powders can be used in the field of high-temperature applications as intermetallic balls for integrated chip interconnects.

2017 ◽  
Vol 21 ◽  
pp. 86-93
Author(s):  
Jianying He ◽  
Jianyang Wu ◽  
Shijo Nagao ◽  
Lijie Qiao ◽  
Zhiliang Zhang

Ecology ◽  
1997 ◽  
Vol 78 (7) ◽  
pp. 2118-2132 ◽  
Author(s):  
Renate A. Wesselingh ◽  
Peter G. L. Klinkhamer ◽  
Tom J. de Jong ◽  
Laurence A. Boorman

CrystEngComm ◽  
2021 ◽  
Vol 23 (16) ◽  
pp. 2928-2932
Author(s):  
Changlin Yao ◽  
Lei Wang ◽  
Xinyuan Wang ◽  
Xutang Tao

The transformation from the piroxicam monohydrate to form I or form II could be achieved precisely by adjusting the particle size itself in the 99% acetone-1% H2O solvent at 31 °C.


1995 ◽  
Vol 111 (13) ◽  
pp. 955-960
Author(s):  
Yasuhiro TSUGITA ◽  
Hideki HUKUHARA ◽  
Yoshiaki YAMANAKA ◽  
Minoru NISHIDA ◽  
Takao ARAKI

Materia Japan ◽  
1997 ◽  
Vol 36 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Hideya Kaminaka ◽  
Yoshiaki Shida ◽  
Kouichi Koushiro

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 513 ◽  
Author(s):  
Dong Yoon ◽  
Daiki Tanaka ◽  
Tetsushi Sekiguchi ◽  
Shuichi Shoji

A fully passive microdroplet sorting method is presented in this paper. On the rails with dot patterns, the droplets were sorted in different ways depending on their size. However, the effect of droplet properties on the threshold size of the sorting was eliminated. The droplet positions on two railways and the Laplace pressure of the droplets on the dot patterns allowed selective droplet transfer according to size. Different gaps between the rails altered the threshold size of the transfer. However, the threshold size was independent of the droplet’s surface tension and viscosity because the droplet transfer utilized only the droplet position and Laplace pressure without lateral flow to sort targets. This feature has a high potential for bio/chemical applications requiring categorization of droplet targets consisting of various mixtures as pre- or post-elements.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 884
Author(s):  
Kenny L. Alvarez ◽  
José Manuel Martín ◽  
Nerea Burgos ◽  
Mihail Ipatov ◽  
Lourdes Domínguez ◽  
...  

We present the evolution of magnetic anisotropy obtained from the magnetization curve of (Fe0.76Si0.09B0.10P0.05)97.5Nb2.0Cu0.5 amorphous and nanocrystalline alloy produced by a gas atomization process. The material obtained by this process is a powder exhibiting amorphous character in the as-atomized state. Heat treatment at 480 °C provokes structural relaxation, while annealing the powder at 530 °C for 30 and 60 min develops a fine nanocrystalline structure. Magnetic anisotropy distribution is explained by considering dipolar effects and the modified random anisotropy model.


2010 ◽  
Vol 654-656 ◽  
pp. 492-495
Author(s):  
Yuhki Tsukada ◽  
Atsuhiro Shiraki ◽  
Yoshinori Murata ◽  
Shigeru Takaya ◽  
Toshiyuki Koyama ◽  
...  

Phase-field simulation of phase transformation during creep in Type 304 austenitic steel is performed and simultaneous nucleation and growth of both M23C6 carbide and ferromagnetic α phases are reproduced. Nucleation events of these product phases are explicitly introduced through a probabilistic Poisson seeding process based on the classical nucleation theory. Creep dislocation energy near the carbide is integrated into the nucleation driving force for the α phase. We examine the effect of the dislocation density on precipitation of the α phase, and it is found that a small difference in the dislocation density leads to a significant change in precipitation behavior of the α phase.


Sign in / Sign up

Export Citation Format

Share Document