amorphous character
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
MARK EDWARDS

The aim of this learned and enterprising book is to elucidate the structure and intention of Clement's Stromateis by comparing it with pagan texts from the first and second centuries of our era which belong, as we might now say, to the same genre. This term, which is chaperoned by quotation marks on p. 15, has proved itself heuristically indispensable, but has no closer equivalent in ancient Greek than genos, which is as likely to denote the style or metre of a work as its place in a critical taxonomy. Strict conventions governed versification and the composition of speeches for given occasions, but it is we who have all but invented the epyllion and coined our own names for the novel, the autobiography and the didactic poem. While Heath proposes on p. 138 to render Stromateis as ‘layout’, ‘miscellany’ is the term that is now most commonly applied to this and other ancient texts whose amorphous character seems to resist taxonomy. As Heath observes, however (p. 24), there are all too many specimens of Greek and Latin writing which are in some sense miscellaneous: she might have quoted the thesis of her namesake, Malcolm Heath, that abrupt transitions, divagations and surprises were not aberrations from the classical norm, but calculated devices to heighten the pleasure or whet the interest of the reader, both in poetry and in prose. The culture of ubiquitous imitation was also a culture of unceasing improvisation, and both practices are amply illustrated in Heath's comparison of the Stromateis with four books from the second century to which it bears an obvious resemblance: the Natural history of Pliny the Elder, the Convivial questions of Plutarch, the Attic nights of Aulus Gellius and the Deipnosophistae of Athenaeus.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarah B. Duckworth ◽  
Xavier Gaona ◽  
Alexander Baumann ◽  
Kathy Dardenne ◽  
Jörg Rothe ◽  
...  

Abstract The solubility of 99Tc(IV) was investigated from undersaturation conditions in NaCl–Na2SO4 (0.3 M ≤ I ≤ 5.0 M), MgCl2–MgSO4 (I = 13.5 M) and CaCl2–CaSO4 (I = 13.5 M) systems with 0.001 M ≤ [SO4 2−]tot ≤ 1.0 M and 1 ≤ pH m  ≤ 12 (with pH m  = −log[H+], in molal units). Reducing conditions were set by either Sn(II) or Fe(0). Special efforts were dedicated to accurately characterize the correction factors A m required for the determination of pH m from the experimentally measured pH values in the mixed salt systems investigated, with pH m  = pHexp + A m . The combination of (pe + pH m ) measurements with Pourbaix diagrams of Tc suggests that technetium is present in its +IV redox state. This hypothesis is confirmed by XANES, which unambiguously shows the predominance of Tc(IV) both in the aqueous and solid phases of selected solubility samples. XRD and SEM–EDS support the amorphous character of the solid phase controlling the solubility of Tc(IV). EXAFS data confirm the predominance of TcO2(am, hyd) at pH m  > 1.5, whereas the formation of a Tc(IV)–O–Cl solid phase is hinted at lower pHm values in concentrated NaCl–Na2SO4 systems with ≈5 M NaCl. Solubility data collected in sulfate-containing systems are generally in good agreement with previous solubility studies conducted in sulfate-free NaCl, MgCl2 and CaCl2 solutions of analogous ionic strength. Although the complexation of Tc(IV) with sulfate cannot be completely ruled out, these results strongly support that, if occurring, complexation must be weak and has no significant impact on the solubility of Tc(IV) in dilute up to highly saline media. Solubility upper-limits determined in this work can be used for source term estimations including the effect of sulfate in a variety of geochemical conditions relevant in the context of nuclear waste disposal.


Author(s):  
Marko Milovanovic ◽  
Lydia Mihailowitsch ◽  
Mathusiha Santhirasegaran ◽  
Volker Brandt ◽  
Joerg C. Tiller

Abstract Hydrogels with good mechanical properties have great importance in biological and medical applications. Double-network (DN) hydrogels were found to be very tough materials. If one of the two network phases is an inorganic material, the DN hydrogels also become very stiff without losing their toughness. So far, the only example of such an organic–inorganic DN hydrogel is based on calcium phosphate, which takes about a week to be formed as an amorphous inorganic phase by enzyme-induced mineralization. An alternative organic–inorganic DN hydrogel, based on amorphous CaCO3, which can be formed as inorganic phase within hours, was designed in this study. The precipitation of CaCO3 within a hydrogel was induced by urease and a urea/CaCl2 calcification medium. The amorphous character of the CaCO3 was retained by using the previously reported crystallization inhibiting effects of N-(phosphonomethyl)glycine (PMGly). The connection between organic and inorganic phases via reversible bonds was realized by the introduction of ionic groups. The best results were obtained by copolymerization of acrylamide (AAm) and sodium acrylate (SA), which led to water-swollen organic–inorganic DN hydrogels with a high Young’s modulus (455 ± 80 MPa), remarkable tensile strength (3.4 ± 0.7 MPa) and fracture toughness (1.1 ± 0.2 kJ m−2). Graphical Abstract The present manuscript describes the method of enzymatic mineralization of hydrogels for the production of ultrastiff and strong composite hydrogels. By forming a double-network structure based on an organic and an inorganic phase, it is possible to improve the mechanical properties of a hydrogel, such as stiffness and strength, by several orders of magnitude. The key to this is the formation of a percolating, amorphous inorganic phase, which is achieved by inhibiting crystallization of precipitated amorphous CaCO3 with N-(phosphonomethyl)glycine and controlling the nanostructure with co polymerized sodium acrylate. This creates ultrastiff, strong and tough organic–inorganic double-network hydrogels.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 623
Author(s):  
Talles Barcelos da Costa ◽  
Meuris Gurgel Carlos da Silva ◽  
Melissa Gurgel Adeodato Vieira

In a scenario of high demand, low availability, and high economic value, the recovery of rare-earth metals from wastewater is economically and environmentally attractive. Bioadsorption is a promising method as it offers simple design and operation. The aim of this study was to investigate lanthanum bioadsorption using a polymeric bioadsorbent of sericin/alginate/poly(vinyl alcohol)-based biocomposite. Batch system assays were performed to evaluate the equilibrium, thermodynamics, regeneration, and selectivity of bioadsorption. The maximum capture amount of lanthanum at equilibrium was 0.644 mmol/g at 328 K. The experimental equilibrium data were better fitted by Langmuir and Dubinin–Radushkevich isotherms. Ion exchange mechanism between calcium and lanthanum (2:3 ratio) was confirmed by bioadsorption isotherms. Thermodynamic quantities showed that the process of lanthanum bioadsorption was spontaneous (−17.586, −19.244, and −20.902 kJ/mol), endothermic (+15.372 kJ/mol), and governed by entropic changes (+110.543 J/mol·K). The reusability of particles was achieved using 0.1 mol/L HNO3/Ca(NO3)2 solution for up to five regeneration cycles. The bioadsorbent selectivity followed the order of lanthanum > cadmium > zinc > nickel. Additionally, characterization of the biocomposite prior to and post lanthanum bioadsorption showed low porosity (9.95 and 12.35%), low specific surface area (0.054 and 0.019 m2/g), amorphous character, and thermal stability at temperatures up to 473 K. This study shows that sericin/ alginate/poly(vinyl alcohol)-based biocomposites are effective in the removal and recovery of lanthanum from water.


2021 ◽  
Vol 876 ◽  
pp. 25-30
Author(s):  
Rosa M. Aranda Louvier ◽  
Raquel Astacio Lopez ◽  
Fátima Ternero Fernández ◽  
Petr Urban ◽  
Francisco G. Cuevas

This work studies the production of melt spun Fe78Si9B13 ribbons with amorphous or nanocrystalline structure. The main objective is the preservation of the amorphous structure after obtaining powders by mechanical milling of the ribbons, as well as the study of the influence of the milling conditions on the size distribution and structure of the obtained powders. In order to obtain high quality amorphous ribbons, the wheel rotation speed, crucible-wheel distance, melt homogenization time, ejection pressure and the ejection temperature were optimized in the melt spinning process. Different mills were used for powder production, studying the size distribution, efficiency, and preservation of the amorphous character as a function of the milling time. Ribbons and powders were characterized by X-ray diffraction (XRD) and electron microscopy (SEM and TEM); laser diffraction was used for powder granulometry.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 884
Author(s):  
Kenny L. Alvarez ◽  
José Manuel Martín ◽  
Nerea Burgos ◽  
Mihail Ipatov ◽  
Lourdes Domínguez ◽  
...  

We present the evolution of magnetic anisotropy obtained from the magnetization curve of (Fe0.76Si0.09B0.10P0.05)97.5Nb2.0Cu0.5 amorphous and nanocrystalline alloy produced by a gas atomization process. The material obtained by this process is a powder exhibiting amorphous character in the as-atomized state. Heat treatment at 480 °C provokes structural relaxation, while annealing the powder at 530 °C for 30 and 60 min develops a fine nanocrystalline structure. Magnetic anisotropy distribution is explained by considering dipolar effects and the modified random anisotropy model.


MRS Advances ◽  
2020 ◽  
Vol 5 (46-47) ◽  
pp. 2419-2428
Author(s):  
Alexander K. Nguyen ◽  
Peter L. Goering ◽  
Shelby A. Skoog ◽  
Roger J. Narayan

AbstractIn this study, lithographic ceramic manufacturing was used to create solid chips out of hydroxyapatite, tricalcium phosphate, zirconia, alumina, and SiAlON ceramic. X-ray powder diffraction of each material confirmed that the chips were crystalline, with little amorphous character that could result from remaining polymeric binder, and were composed entirely out of the ceramic feedstock. Surface morphologies and roughnesses were characterized using atomic force microscopy. Human bone marrow stem cells cultured with osteogenic supplements on each material type expressed alkaline phosphatase levels, an early marker of osteogenic differentiation, on par with cells cultured on a glass control. However, cells cultured on the tricalcium phosphate-containing material expressed lower levels of ALP suggesting that osteoinduction was impaired on this material. Further analyses should be conducted with these materials to identify underlying issues of the combination of material and analysis method.


2019 ◽  
Vol 19 (2) ◽  
pp. 163-170 ◽  
Author(s):  
V.F. Zinchenko ◽  
I.R. Magunov ◽  
O.V. Mozgova ◽  
G.V. Nechyporenko ◽  
I.V. Stoianova

Because of X-ray amorphous character of GeO and B2O3 for study of interaction between them methods of IR transmission spectroscopy and spectroscopy of diffuse reflectance are applied. Essential change of positionand intensity of bands of absorption in system GeO-B2O3 (H3BO3) at heating and thermal evaporation in vacuum is established. It is observed essential gypsochromic shift of short-wave border and bathochromic shift of long wave border of domain of an optical transparency of a coating compared with initial GeO that testifies in favour of change of the nature of a material. A coating from Germanium (ІІ) oxide exhibits high optical and operational parameters and are perspective for interference optics of an IR range of a spectrum.


2019 ◽  
Vol 1151 ◽  
pp. 9-14 ◽  
Author(s):  
Marieta Muresan-Pop ◽  
Klara Magyari ◽  
Adriana Vulpoi

The purpose of this study is the development and characterizations of novel polyvinyl alcohol (PVA)/polyvinyl pyrolidone (PVP) hydrogel blends. Different mixtures of the two polymeric solutions leaded to several hydrogels that were further characterized using X-ray difraction (XRD), differential thermal and thermogravimetric analysis (DTA/TGA) and Fourier transform infrared spectroscopy (FTIR). The influence of the polymer type on hydrogel hydration was also studied, by observing and comparing the samples after drying and rehydration in bidistilled water. The results revealed the maintenance of the amorphous character of the hydrogels after rehydration as well as a higher softening and decomposition temperature in direct relation with the increase of PVA content. The best wetting and swelling results were also given by the hydrogel with the highest PVA content prepared at pH 6.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 285-292
Author(s):  
L. I. Juárez-Amador ◽  
M. Galván-Arellano ◽  
Y. M. Hernández-Rodríguez ◽  
J. A. Andraca-Adame ◽  
G. Romero-Paredes ◽  
...  

AbstractThis work reports by the first time a method to control the geometry of Ga2O3 films nanocrystallites at 350 °C. The formation of controlled shaped nano-crystallites of γ-Ga2O3 from amorphous Ga2O3 films grown by RF-Sputtering at room temperature driven by nano-layers of group IB metals (Cu, Ag or Au) is studied. The reported results can be explained by the role of subsurface metal nano-layers and the non-equilibrium nature of the sputtering processes. To study the effects on the surface structure and their optical properties arrays of amorphous-Ga2O3/IB-metal/amorphous-Ga2O3 were annealed in dry N2 atmosphere at 350 °C by 50, 100 and 150 min. The experimental results can be explained by the evolution of the amorphous character of the films amorphous films towards the nanocrystalline γ-Ga2O3 phase driven by the metal nano-layer seed nature. As the annealing time was increased the transition from amorphous-Ga2O3 to the nanocrystalline γ-Ga2O3 phase was detected by X-ray diffraction analysis. The transition to the nanocrystalline γ-Ga2O3 is demonstrated by the formation of octahedral, triangle and ball shape nanocrystallites with sizes of ∼5 to 50 nm according to FE-SEM analysis. The influence of the metal nano-layer is clearly seen by the shift of the plasmon frequency resonance produced by the Ga2O3/IB-metal/Ga2O3 arrays in the region from 400 to 600 nm caused by the modification of the interface Ga2O3/IB-metal produced by the applied annealing stages.


Sign in / Sign up

Export Citation Format

Share Document