laplace pressure
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Shinya Kano ◽  
Harutaka Mekaru

Abstract A liquid-dependent impedance is observed by vapor condensation and percolation in the void space between nanoparticles. Under the Laplace pressure, vapor is effectively condensed into liquid to fill the nanoscale voids in an as-deposited nanoparticle film. Specifically, the transient impedance of the nanoparticle film in organic vapor is dependent on the vapor pressure and the conductivity of the condensed liquid. The response follows a power law that can be explained by the classical percolation theory. The condensed vapor gradually percolates into the void space among nanoparticles. A schematic is proposed to describe the vapor condensation and percolation dynamics among the nanoparticles. These findings offer insights into the behavior of vapor adsorbates in nanomaterial assemblies that contain void space.


2021 ◽  
Author(s):  
Carine Huon ◽  
Avinash Tiwari ◽  
Cinzia Rotella ◽  
Paolo Mangiagalli ◽  
bo persson

Abstract We study the leakage of fluids (liquids or gases) in syringes with glass barrel, steel plunger and rubber O-ring stopper. The leakrate depends on the interfacial surface roughness and on the viscoelastic properties of the rubber. Random surface roughness is produced by sandblasting the rubber O-rings. We present a very simple theory for gas flow which takes into account both the diffusive and ballistic flow. The theory shows that the interfacial fluid flow (leakage) channels are so narrow that the gas flow is mainly ballistic (the so called Knudsen limit). We compare the leakrate obtained using air and helium. For barrels filled with water we observe no leakage even if leakage occurs for gases. We interpret this as resulting from capillary (Laplace pressure or surface energy) effects.


2021 ◽  
pp. 2141001
Author(s):  
Fanli Liu ◽  
Moran Wang

Transport mechanisms of small droplets on walls in micropores become significant for applications in energy, resource and biomedical engineering, however, a suitable numerical tool remains challenging. Macroscopic approach is ideal both in computing cost and simplicity but its applicability is doubted for nanoscale droplet, yet no clear evaluation on when exactly does it become invalid has been made. This work evaluates the applicability of macroscopic approach for the displacing process of droplet in a micropore and investigates relevant size effects, by comparing the simulation results of multiscale modeling and macroscopic method. Three types of size effects affecting the displacement results are identified: Laplace pressure, low interfacial density, and breakdown of macroscopic description. For the system studied, the Laplace pressure dominates for relatively big droplet, then low density region becomes significant for drop diameter smaller than 18 times molecule diameter, and finally macroscopic description gradually fails for drop diameter smaller than 13 times molecule diameter. We further investigate the influences of system scale and fluid type on these size effects and discuss the relative importance of each size effect under different conditions. Results indicate that traditional macroscopic approach may be invalid even when continuum assumption still holds due to other size effects, and corrections for those effects can be made to extend the applicability of macroscopic method.


iScience ◽  
2021 ◽  
pp. 102945
Author(s):  
Xiaohuan Wang ◽  
Long Li ◽  
Yingfeng Shao ◽  
Jiachen Wei ◽  
Ruopu Song ◽  
...  
Keyword(s):  

Author(s):  
Laure Lecacheux ◽  
Abdelkrim Sadoudi ◽  
Agnès Duri ◽  
Véronique Planchot ◽  
Thierry Ruiz

2021 ◽  
Author(s):  
Souparna Chakraborty ◽  
Abhirup Chaudhuri ◽  
Chirodeep Bakli

Abstract The water crisis affects the lives of millions over the world. Minimizing water losses in major water-consuming industries like power plants is of utmost importance. Since cooling towers lead to huge amounts of water loss, implementing modifications for recovering a fraction of this lost water in the exhaust has been a topic of active research. These modifications are often inspired by biological species, especially in arid regions, which have adapted in different ways by collecting water from fog, and hence biomimetic has become popular for water harvesting techniques. We revisit the fog collection technique most commonly used in nature and compare the relative merits of the same with surface texture and wettability. Arrays of spines of three different configurations were considered in this study — namely cuboidal, cylindrical and conical shapes. A theoretical model is developed to carry out a comparative analysis of these configurations considered. The effects of Laplace pressure gradient, gravity, topography and tilt angle on droplet transportation along the spines were explored to decipher the most efficient water transport and collection route. The observations are explained by performing extensive Molecular Dynamics (MD) simulations to bring out the interplay of surface tension and roughness at the contact line verifying the proposed formulations. The conical-shaped spines exhibited maximum transport and collection efficiency for zero tilt angle. Both cuboidal and cylindrical shaped spines showed little or no water collection when the spines are oriented horizontally. This is due to the Laplace pressure gradient which arises from varying radii of curvature of the conical shaped spine which drives the water droplets towards the base but is absent for the other two cases considered. On the contrary, when there is some finite tilt angle, the contribution of gravity comes into consideration and the water collection rate of the conical and cylindrical spines becomes comparable. Both Laplace pressure gradient and gravity help in water transport in the conical case whereas only gravity assists the water transport process for cylindrical spines. Still, the water collection rate is almost the same for these two scenarios due to enhanced coalescence of liquid droplets for the cylindrical case as is observed from MD simulations. As the droplets coalesce, they get larger and gravity aids the transport process by overcoming the solid-liquid interaction strength. Cuboidal shaped spines show the least efficiency with only gravity to assist the transport process and no coalescence is observed in this case. Moreover, the geometrical disparity makes the tips of conical spines more hydrophobic compared to the others which further ameliorates the water collection efficiency.


Langmuir ◽  
2021 ◽  
Author(s):  
Amir Bayat ◽  
Mahdi Ebrahimi ◽  
Saeed Rahemi Ardekani ◽  
Esmaiel Saievar Iranizad ◽  
Alireza Zaker Moshfegh

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 325
Author(s):  
ChangHee Son ◽  
BingQiang Ji ◽  
JunKyu Park ◽  
Jie Feng ◽  
Seok Kim

A water droplet dispensed on a superhydrophobic ratchet surface is formed into an asymmetric shape, which creates a Laplace pressure gradient due to the contact angle difference between two sides. This work presents a magnetically actuated superhydrophobic ratchet surface composed of nanostructured black silicon strips on elastomer ridges. Uniformly magnetized NdFeB layers sputtered under the black silicon strips enable an external magnetic field to tilt the black silicon strips and form a superhydrophobic ratchet surface. Due to the dynamically controllable Laplace pressure gradient, a water droplet on the reported ratchet surface experiences different forces on two sides, which are explored in this work. Here, the detailed fabrication procedure and the related magnetomechanical model are provided. In addition, the resultant asymmetric spreading of a water droplet is studied. Finally, droplet impact characteristics are investigated in three different behaviors of deposition, rebound, and penetration depending on the impact speed. The findings in this work are exploitable for further droplet manipulation studies based on a dynamically controllable superhydrophobic ratchet surface.


MEMBRANE ◽  
2021 ◽  
Vol 46 (3) ◽  
pp. 161-165
Author(s):  
Izumi Ichinose ◽  
Takako Tsubata ◽  
Edhuan Ismail Bin ◽  
Masataka Sakamoto ◽  
Yoshiki Mizuno

Author(s):  
Shuo Wang ◽  
Limin Zhou ◽  
Yongxiang Gao

It has been suggested that electrostatic repulsion between charges at the surface of bulk nanobubbles might balance Laplace pressure leading to their stability. This mechanism has been widely discussed in...


Sign in / Sign up

Export Citation Format

Share Document