scholarly journals Fabrication of Porous Materials by Spark Plasma Sintering: A Review

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 541 ◽  
Author(s):  
Dina Dudina ◽  
Boris Bokhonov ◽  
Eugene Olevsky

Spark plasma sintering (SPS), a sintering method that uses the action of pulsed direct current and pressure, has received a lot of attention due to its capability of exerting control over the microstructure of the sintered material and flexibility in terms of the heating rate and heating mode. Historically, SPS was developed in search of ways to preserve a fine-grained structure of the sintered material while eliminating porosity and reaching a high relative density. These goals have, therefore, been pursued in the majority of studies on the behavior of materials during SPS. Recently, the potential of SPS for the fabrication of porous materials has been recognized. This article is the first review to focus on the achievements in this area. The major approaches to the formation of porous materials by SPS are described: partial densification of powders (under low pressures, in pressureless sintering processes or at low temperatures), sintering of hollow particles/spheres, sintering of porous particles, and sintering with removable space holders or pore formers. In the case of conductive materials processed by SPS using the first approach, the formation of inter-particle contacts may be associated with local melting and non-conventional mechanisms of mass transfer. Studies of the morphology and microstructure of the inter-particle contacts as well as modeling of the processes occurring at the inter-particle contacts help gain insights into the physics of the initial stage of SPS. For pre-consolidated specimens, an SPS device can be used as a furnace to heat the materials at a high rate, which can also be beneficial for controlling the formation of porous structures. In sintering with space holders, SPS processing allows controlling the structure of the pore walls. In this article, using the literature data and our own research results, we have discussed the formation and structure of porous metals, intermetallics, ceramics, and carbon materials obtained by SPS.

2009 ◽  
Vol 151 ◽  
pp. 240-244
Author(s):  
Ilmars Zalite ◽  
Natalja Zilinska ◽  
Ints Šteins ◽  
Janis Krastins

Different compositions of α- and α-/β- SiAlON materials have been prepared from separate nanopowders and their composites: Si3N4 – AlN, Si3N4, Al2O3 and Y2O3, produced by the method of plasma-chemical synthesis. Compositions have been sintered by spark plasma sintering (SPS) method in vacuum at 1700 °C with a heating rate of 100 °C/min and holding time of 5 min. The densification behaviour of the materials at these sintering conditions depends insignificantly on the powder composition. It is possible to obtain dense ceramic materials with relatively fine-grained structure (200-400 nm) and good mechanical properties from nanosized powders at relatively low temperatures (1400-1600 °C). The holding time at applied compacting conditions is still too short to ensure the formation of α- SiAlON phase corresponding to the phase diagram. All samples consist of β- SiAlON’s of differing composition and this is the reason for relatively low hardness of samples (HV5 = 15,6-16,9 GPa).


2020 ◽  
Vol 56 (12) ◽  
pp. 1307-1313
Author(s):  
L. S. Alekseeva ◽  
A. V. Nokhrin ◽  
M. S. Boldin ◽  
E. A. Lantsev ◽  
A. I. Orlova ◽  
...  

2021 ◽  
Vol 1758 (1) ◽  
pp. 012031
Author(s):  
A A Popov ◽  
V N Chuvil’deev ◽  
M S Boldin ◽  
A V Nokhrin ◽  
E A Lantsev ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 1113-1116 ◽  
Author(s):  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Jong Jae Park ◽  
Hwan Tae Kim ◽  
Dina V. Dudina

Microstructural change of TiB2-Cu nanocomposite during spark plasma sintering (SPS) was investigated. Under simultaneous action of pressure, temperature and pulse electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton. Increase of SPS temperatures and holding times promotes the densification of sintered compacts due to local melting of copper matrix.


2004 ◽  
Vol 83 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Baorang Li ◽  
Xiaohui Wang ◽  
Longtu Li ◽  
Hui Zhou ◽  
Xingtao Liu ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1323 ◽  
Author(s):  
Yanlin Pan ◽  
Daoping Xiang ◽  
Ning Wang ◽  
Hui Li ◽  
Zhishuai Fan

Fine-grained W-6Ni-4Mn alloys were fabricated by spark plasma sintering (SPS) using mechanical milling W, Ni and Mn composite powders. The relative density of W-6Ni-4Mn alloy increases from 71.56% to 99.60% when it is sintered at a low temperature range of 1000–1200 °C for 3 min. The spark plasma sintering process of the alloy can be divided into three stages, which clarify the densification process of powder compacts. As the sintering temperature increases, the average W grain size increases but remains at less than 7 µm and the distribution of the binding phase is uniform. Transmission electron microscopy (TEM) observation reveals that the W-6Ni-4Mn alloy consists of the tungsten phase and the γ-(Ni, Mn, W) binding phase. As the sintering temperature increases, the Rockwell hardness and bending strength of alloys initially increases and then decreases. The optimum comprehensive hardness and bending strength of the alloy are obtained at 1150 °C. The main fracture mode of the alloys is W/W interface fracture.


2017 ◽  
Vol 743 ◽  
pp. 19-24 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
Anatoliy A. Bataev ◽  
Vyacheslav I. Mali ◽  
Maksim A. Esikov ◽  
Veronika V. Sun Shin Yan ◽  
...  

In the present study, a mixture of powders (87.9 at.% Ni, 12 at.% Al, 0.1 at.% B) was used as the initial material to produce sintered Ni3Al + B alloy. Spark Plasma Sintering (SPS) method was used to compact the powder. The powder mixtures were previously prepared in two ways: mixing the initial powders in a mortar (М1) and mechanical activation (М2). The microstructure was observed using optical microscope (OM). The addition of small amount of boron to the initial mixture of nickel and aluminum improves the density of the sintered Ni3Al intermetallic compound (98.8%). The results of density, bending and microhardness tests showed, that the provisional three-minute mechanical activation improves almost all properties of the sintered material. The compact obtained by SPS by M2 contributes to the formation of a homogeneous fine-grained structure of the material. It leads to further increase in flexural bending strength up to 2200 MPa. This value is almost 8 times the strength of the intermetallic Ni3Al stoichiometric composition obtained by SPS.


2020 ◽  
Vol 40 (1) ◽  
pp. 1-11 ◽  
Author(s):  
S. Gavarini ◽  
J. Baillet ◽  
N. Millard-Pinard ◽  
V. Garnier ◽  
C. Peaucelle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document