scholarly journals Progressive Failure Simulation of Notched Tensile Specimen for Triaxially-Braided Composites

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 833 ◽  
Author(s):  
Zhenqiang Zhao ◽  
Haoyuan Dang ◽  
Jun Xing ◽  
Xi Li ◽  
Chao Zhang ◽  
...  

The mechanical characterization of textile composites is a challenging task, due to their nonuniform deformation and complicated failure phenomena. This article introduces a three-dimensional mesoscale finite element model to investigate the progressive damage behavior of a notched single-layer triaxially-braided composite subjected to axial tension. The damage initiation and propagation in fiber bundles are simulated using three-dimensional failure criteria and damage evolution law. A traction–separation law has been applied to predict the interfacial damage of fiber bundles. The proposed model is correlated and validated by the experimentally measured full field strain distributions and effective strength of the notched specimen. The progressive damage behavior of the fiber bundles is studied by examining the damage and stress contours at different loading stages. Parametric numerical studies are conducted to explore the role of modeling parameters and geometric characteristics on the internal damage behavior and global measured properties of the notched specimen. Moreover, the correlations of damage behavior, global stress–strain response, and the efficiency of the notched specimen are discussed in detail. The results of this paper deliver a throughout understanding of the damage behavior of braided composites and can help the specimen design of textile composites.

2017 ◽  
Vol 39 (11) ◽  
pp. 4188-4204 ◽  
Author(s):  
Ziyang Tian ◽  
Ying Yan ◽  
Jinxin Ye ◽  
Yang Hong ◽  
Xin Li

2016 ◽  
Vol 23 (4) ◽  
pp. 839-856 ◽  
Author(s):  
Bing Lei ◽  
Zhenguo Liu ◽  
Jixuan Ya ◽  
Yibo Wang ◽  
Xiaokang Li

2020 ◽  
pp. 152808372098017
Author(s):  
Chao Zhang ◽  
Jianchun Liu ◽  
Tinh Quoc Bui ◽  
Jose L Curiel-Sosa ◽  
Jinzhong Lu

The yarn/yarn and yarn/matrix interface debonding has been recognized as a vital failure mode of 3 D braided composites. We present in this paper a meso-scale finite element (FE) model, which considers yarn/yarn and yarn/matrix interface debonding, for modeling progressive damage evolution of 3 D braided composites under typical tensile and shear loadings. In this setting, the damage state of braiding yarns and matrix is described through a continuum damage model (CDM) coupled with Murakami damage tensor; a bilinear traction-separation description is employed to govern the yarn/yarn and yarn/matrix interface behavior modeled by surface-based cohesive contact. We thus develop a user-material subroutine VUMAT (ABAQUS/Explicit) for our progressive damage simulation, including stress analysis, failure analysis and material properties degradation scheme. The mechanical properties of 3 D braided composites, and more importantly the damage evolution of interface debonding are thoroughly analyzed. The proposed FE modeling strategy provides a new perspective for the interface response study of other textile composites.


2016 ◽  
Vol 25 (3) ◽  
pp. 096369351602500 ◽  
Author(s):  
T. Arabatti ◽  
N. K. Parambil ◽  
S. Gururaja

Damage initiation and progression in long fibre unidirectional continuous polymer composites has been studied at the micro-scale considering a three dimensional repeating unit cell (3D-RUC) with square packing consisting of a single fibre in a polymer matrix. Three damage modes under static loading have been looked at, viz., matrix damage, fibre failure and fibre-matrix debonding. A progressive damage model for the matrix, fibre breakage model using maximum stress failure criterion and interface debonding using a traction-separation criterion via cohesive zone modelling (CZM) approach has been implemented. Homogenization of the said 3D-RUC has been conducted for various load cases that describes the averaged response of the microstructure under combined progressive damage modes.


2019 ◽  
Vol 50 (1) ◽  
pp. 70-97 ◽  
Author(s):  
Wei Tao ◽  
Ping Zhu ◽  
Di Wang ◽  
Changhu Zhao ◽  
Zhao Liu

This paper investigates the tensile properties of 3D orthogonal woven carbon fiber composites with tilted binder by experiment and simulation. The tensile failure strain and fracture mode of this composite show distinguished discrepancy with idealized 3D orthogonal woven composites experimentally. In order to explain this specific failure mechanism, a unit cell finite element model incorporated with damage models of constituents is established to reproduce the damage initiation and propagation of 3D orthogonal woven composites with tilted binder during tensile test. A three-dimensional failure criterion based on Hashin's criterion and Pinho's criterion is utilized to describe the progressive damage of yarns, while the non-linear behavior of the matrix is predicted by Drucker-Prager yield criterion. Besides, a traction-separation law is applied to predict the damage of yarn-matrix interface. The proposed unit cell model is correlated and validated by global stress–strain curves, DIC full-field strain distributions and modulus history curve. The damage evolution process of 3D orthogonal woven carbon fiber composites with tilted binder, including fiber tow failure, matrix cracking, and interfacial debonding, is recorded and investigated by the modulus history curve from simulation.


Sign in / Sign up

Export Citation Format

Share Document