scholarly journals The Influence of Si/Al Ratios on Adsorption and Desorption Characterizations of Pd/Beta Served as Cold-Start Catalysts

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1045 ◽  
Author(s):  
Ming Jiang ◽  
Jun Wang ◽  
Jianqiang Wang ◽  
Meiqing Shen

: The majority of NOx is exhausted during the cold-start period for the low temperature of vehicle emissions, which can be solved by using Pd/zeolite catalysts to trap NOx at low temperature and release NOx at a high temperature that must be higher than the operating temperature of selective catalytic reduction catalysts (SCR). In this work, several Pd/Beta catalysts were prepared to identify the influence of Si/Al ratios on NO and C3H6 adsorption and desorption characterizations. The physicochemical properties were identified using N2 physical adsorption, Fourier Transform Infrared Spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray photo electron spectroscopy (XPS), and Na+ titration, while the adsorption and desorption characterizations were investigated by catalyst evaluation. The results indicated that the amount of dispersed Pd ions, the main active sites for NO and C3H6 adsorption, decreased with the increase of Si/Al ratios. Besides this, the intensity of Brønsted and Lewis acid decreased with the increase of Si/Al ratios, which also led to the decrease of NO and C3H6 adsorption amounts. Therefore, Pd dispersion and the acidic properties of Pd/Beta together determined the adsorption ability of NO and C3H6. Moreover, lower Si/Al ratios resulted in the formation of an additional dispersed Pd cationic species, Pd(OH)+, from which adsorbed NO released at a much lower temperature. Finally, an optimum Si/Al ratio of Pd/Beta was found at around 55 due to the balanced performance between the adsorption amounts and desorption temperature.

Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1391
Author(s):  
Yu Qiu ◽  
Chi Fan ◽  
Changcheng Sun ◽  
Hongchang Zhu ◽  
Wentian Yi ◽  
...  

To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 °C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner−Emmet−Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts.


2020 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Ja-Hun Kwak ◽  
Nicholas R. Jaegers ◽  
Miroslaw A. Derewinski ◽  
János Szanyi

<p>Cu/Zeolites catalyze selective catalytic reduction of nitric oxide with ammonia. Although the progress has been made in understanding the rate-limiting step of reaction which is reoxidation of Cu(I)(NH<sub>3</sub>)<sub>2</sub> with oxygen to restore the catalytically active Cu(II) site, the exact NO reduction chemistry remained unknown. Herein, we show that nitrosyl ions NO<sup>+</sup> in the zeolitic micropores are the true active sites for NO reduction. They react with ammonia even at below/room temperature producing molecular nitrogen through the intermediacy of N<sub>2</sub>H<sup>+</sup> cation. Isotopic experiments confirm our findings. No copper is needed for this reaction to occur. However, when NO<sup>+</sup> reacts, “freed up” Bronsted acid site gets occupied by NH<sub>3</sub> to form NH<sub>4</sub><sup>+</sup> – and so the catalytic cycle stops because NO<sup>+</sup> does not form on NH<sub>4</sub>-Zeolites due to their acid sites being already occupied. Therefore, the role of Cu(II) in Cu/Zeolite catalysts is to produce NO<sup>+</sup> by the reaction: Cu(II) + NO à Cu(I) + NO<sup>+ </sup>which we further confirm spectroscopically. The NO<sup>+</sup> then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(I) gets re-oxidized the catalytic cycle then can continue. Thus, our findings are critical for understanding complete SCR mechanism.</p>


2011 ◽  
Vol 356-360 ◽  
pp. 974-979 ◽  
Author(s):  
Xian Long Zhang ◽  
Bo Wen Shi ◽  
Xue Ping Wu ◽  
Wei Ping Jiang ◽  
Bao Jun Yang ◽  
...  

Palygorskite supported manganese oxide catalysts (MnOx/PG) were prepared for lower temperature selective catalytic reduction (SCR) of NOx by NH3. Catalyst’s SCR activity was estimated at varied temperatures. Catalyst’s properties were characterized by XRD, NH3adsorption and TPD. Results showed that MnOx/PG catalyst was highly active for SCR at low-temperature. It was also found that NH3 was mainly adsorbed on palygorskite in two forms. Weakly adsorbed NH3, which was seldom inhibited by loading of MnOx, but was more favorable to SCR. Whereas strongly adsorbed NH3was more likely to be inhibited by MnOx loading but was inessential for SCR.


2018 ◽  
Vol 54 (30) ◽  
pp. 3783-3786 ◽  
Author(s):  
Jianwei Fan ◽  
Menghua Lv ◽  
Wei Luo ◽  
Xianqiang Ran ◽  
Yonghui Deng ◽  
...  

A subtle catalyst is designed with CuO and MnO2 active centers on the surface of mesoporous titania for low-temperature SCR.


2020 ◽  
Vol 44 (3) ◽  
pp. 817-831 ◽  
Author(s):  
Junqiang Xu ◽  
Yahua Qin ◽  
Honglin Wang ◽  
Fang Guo ◽  
Jiaqing Xie

This paper highlights the design strategies of the copper-based zeolite catalysts with excellent catalytic activity at low temperature for HC-SCR.


2018 ◽  
Vol 237 ◽  
pp. 263-272 ◽  
Author(s):  
Peirong Chen ◽  
Abhishek Khetan ◽  
Magdalena Jabłońska ◽  
Johannes Simböck ◽  
Martin Muhler ◽  
...  

Author(s):  
Guangpeng Yang ◽  
Jingyu Ran ◽  
Xuesen Du ◽  
Xiangmin Wang ◽  
Zhilin Ran ◽  
...  

Cu-SAPO-34 zeolite catalysts show excellent NH3-SCR performance at low temperature, which is due to the catalytic capacity of copper species.


2020 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Ja-Hun Kwak ◽  
Nicholas R. Jaegers ◽  
Miroslaw A. Derewinski ◽  
János Szanyi

<p>Cu/Zeolites catalyze selective catalytic reduction of nitric oxide with ammonia. Although the progress has been made in understanding the rate-limiting step of reaction which is reoxidation of Cu(I)(NH<sub>3</sub>)<sub>2</sub> with oxygen to restore the catalytically active Cu(II) site, the exact NO reduction chemistry remained unknown. Herein, we show that nitrosyl ions NO<sup>+</sup> in the zeolitic micropores are the true active sites for NO reduction. They react with ammonia even at below/room temperature producing molecular nitrogen through the intermediacy of N<sub>2</sub>H<sup>+</sup> cation. Isotopic experiments confirm our findings. No copper is needed for this reaction to occur. However, when NO<sup>+</sup> reacts, “freed up” Bronsted acid site gets occupied by NH<sub>3</sub> to form NH<sub>4</sub><sup>+</sup> – and so the catalytic cycle stops because NO<sup>+</sup> does not form on NH<sub>4</sub>-Zeolites due to their acid sites being already occupied. Therefore, the role of Cu(II) in Cu/Zeolite catalysts is to produce NO<sup>+</sup> by the reaction: Cu(II) + NO à Cu(I) + NO<sup>+ </sup>which we further confirm spectroscopically. The NO<sup>+</sup> then reacts with ammonia to produce nitrogen and water. Furthermore, when Cu(I) gets re-oxidized the catalytic cycle then can continue. Thus, our findings are critical for understanding complete SCR mechanism.</p>


Sign in / Sign up

Export Citation Format

Share Document